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Introduction to Logistic Regression 

 

Regression analysis enables you to characterize the relationship between a response variable and one or 

more predictor variables. In linear regression, the response variable is continuous. In logistic regression, 

the response variable is categorical. 
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If the response variable is dichotomous (two categories), the appropriate logistic regression model is 

binary logistic regression. 

If you have more than two categories (levels) within the response variable, then there are two possible 

logistic regression models: 

- If the response variable is nominal, you fit a nominal logistic regression model. 

- If the response variable is ordinal, you fit an ordinal logistic regression model.  

 

 

 

This plot shows a model of the relationship between a continuous predictor and the probability of an 

event or outcome. The linear model clearly will not fit if this is the true relationship between X and  

64

Why Not Ordinary Least Squares Regression?

Yi = 0 + 1X1i + i

 If the response variable is categorical, then how do 

you code the response numerically?

 If the response is coded (1=Yes and 0=No) and your 

regression equation predicts 0.5 or 1.1 or -0.4, what 

does that mean practically?

 If there are only two (or a few) possible response 

levels, is it reasonable to assume constant variance 

and normality?
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the probability. In order to model this relationship directly, you must use a nonlinear function. One  

such function is displayed. 

The parameter estimate of this curve determines the rate of increase or decrease of the estimated curve. 

When the parameter estimate is greater than 0, the probability of the outcome increases as the predictor 

variable values increase. When the parameter estimate is less than 0, the probability decreases as the 

predictor variable values increase. As the absolute value of the parameter estimate increases, the curve  

has a steeper rate of change. When the parameter estimate is equal to 0, the curve can be represented by  

a straight, horizontal line that shows an equal probability of the event for everyone. 

The  values cannot be computed in the Linear Regression task. This is not a general linear model. 

 

A logistic regression model applies a logit transformation to the probabilities.  

First, deal with the problem of restricted range of the probability. What about the range of a logit? As  

p approaches its maximum value of 1, the value ln (p / (1 – p)) approaches infinity. As p approaches its 

minimum value of 0, p / (1 – p) approaches 0. The natural log of something approaching 0 is something 

approaching negative infinity. So, the logit has no upper or lower bounds. 

If you can model the logit, then simple algebra will allow you to model the odds or the probability.  

The logit transformation ensures that the model generates estimated probabilities between 0 and 1. 

The logit is the natural log of the odds. The odds and odds ratios were discussed in a previous section. 

This relationship between the odds and the logit will become important later in this section. 

67

Logit Transformation
Logistic regression models transform probabilities called 

logits*.

where

i indexes all cases (observations)

pi is the probability the event (a sale, for 

example) occurs in the ith case

ln is the natural log (to the base e).

* The logit is the natural log of the odds.
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Assumption in logistic regression: The logit transformation of the probabilities results in a linear 

relationship with the predictor variables. 

If the thoughts about the nature of the direct relationship between X and p are correct, then the logit will 

have a straight line relationship with X. In other words, a linear function of X can be used to model the 

logit. In that way, you can indirectly model the probability. 

To verify this assumption, it would be useful to plot the logits by the predictor variable. Logit plots are 

illustrated in a later section.  
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For a binary outcome variable, the linear logistic model with one predictor variable has the form above. 

Unlike linear regression, the logit is not normally distributed and the variance is not constant. Also, 

logistic regression usually requires a more complex estimation method called maximum likelihood to 

estimate the parameters than linear regression. This method finds the parameter estimates that are most 

likely to occur given the data. This is accomplished by maximizing the likelihood function that expresses 

the probability of the observed data as a function of the unknown parameters.  

 

 

In the Logistic Regression task, you specify the proposed relationship between the categorical dependent 

variable and the independent variables. 

69

Logistic Regression Model
logit (pi) = 0 + 1X1 + . . . + kXk

where

logit (pi)= logit of the probability of the event

0= intercept of the regression equation

k= parameter estimate of the kth predictor variable
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Be careful to pay attention to which level of the response variable that you would like to model. That 

might prevent you from accidentally reporting an effect that is exactly opposite to the one that you had 

thought that you were modeling. Modeling the probability of a 0 is the same as modeling the probability 

of not a 1 for a binary response variable.  

 

74

Which Response Level to Model

74

Specify the level 

of the response 

variable that you 

want to model.

For example, do 

you want to model 

the probability of 

a 0 or a 1?
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Binary Logistic Regression 

 

Fit a binary logistic regression model. Select Purchase as the outcome variable and 

Gender as the predictor variable. Specify reference cell coding and specify Male as the reference group. 

Also use the Fit model to level 1 option to model the probability of spending 100 dollars or 

more and request profile likelihood confidence intervals around the estimated odds ratios. 

1. Open the SALES_INCLEVEL data set. Select Tasks  Regression  Logistic Regression…. 

 

2. Assign Purchase to the dependent variable task role and Gender to the classification variables 

role and check select Reference as the coding style for Gender. Male will be the default reference 

level because it is the highest in alphanumeric order. 
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3. Right-click Purchase to change properties. Click the Change... button. In the window that appears, 

select User Defined from the Categories: section, and assign the PURFMT format from the 

Formats: section. Click OK twice to return to the main screen.  

   

4. With Response selected at the left, assure that the value of Fit model to level is set to 1 – 

Big Spender. Note that Response levels for Purchase displays the possible values  

in the data set to fit. 
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5. With Effects selected at the left, add Gender as a  effect in the model. 

 

6. With Options selected at the left, check the box for Profile likelihood under Conditional odds 

ratios in the middle of the window. 
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7. With Plots selected at the left, select 

Custom list of plots. Then check only the 

boxes next to  

Odds ratio plots and Effect plots in the 

list. 

 

8. Click . 

 

 

 

 

The Model Information table describes the 

data set, the response variable, the number of 

response levels, the type of model, the 

algorithm used to obtain the parameter 

estimates, and the number of observations 

read and used.  

The Response Profile table shows the 

response variable values listed according to their 

ordered values. By default, the Logistic Regression task 

orders the response variable alphanumerically so that it 

bases the logistic regression model on the probability of 

the smallest value. Because you specified it in the task 

window in this example, the model is based on the 

probability of purchasing items of 100 dollars or more 

(Purchase=1). 

The Response Profile table also shows the value of the 

response variable and the frequency. 

The Class Level Information table includes the 

predictor variable that was assigned as a classification 

variable. Because you used reference cell coding and 

Male comes last in alphabetical order, this table reflects 

Gender=Male as the reference level. The design 

variable is 1 when Gender=Female and  

0 when Gender=Male. 

Fisher’s scoring algorithm converged to a solution. This 

message should always be checked before moving on. 

There are a number of options to control the 

convergence criterion, but the default is the gradient 

convergence criterion with a default value of 1E-8 

(0.00000001). 
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The Model Fit Statistics provides three tests: AIC is 

Akaike’s ‘A’ information criterion, SC is the 

Schwarz criterion, and 2Log L is the 2 log 

likelihood. AIC and SC are goodness-of-fit measures 

you can use to compare one model to another. Lower 

values indicate a more desirable model. AIC adjusts 

for the number of predictor variables, and SC adjusts 

for the number of predictor variables and the number 

of observations. SC uses a bigger penalty for extra 

variables and therefore favors more parsimonious 

models. 

 A reference for AIC can be found in Findley 

and Parzen (1995). 

The Testing Global Null Hypothesis: BETA=0 

table provides three statistics to test the null 

hypothesis that all regression coefficients of the 

model are 0. 

Using the Likelihood Ratio test, a significant p-value 

for the Likelihood Ratio test provides evidence that 

at least one of the regression coefficients for an explanatory variable is nonzero (in this example the 

p-value is 0.0302, which is significant at the .05 level). This statistic is similar to the overall F test in 

linear regression. The Score and Wald tests are also used to test whether all the regression coefficients  

are 0. The likelihood ratio test is the most reliable, especially for small sample sizes (Agresti 1996). 

The Type 3 Analysis of Effects table is generated when a predictor variable is used as a classification 

variable. The listed effect (variable) is tested using the Wald Chi-Square statistic (in this example, 4.6436 

with a p-value of 0.0312). This analysis is in the Linear Regression task. Because Gender is the only 

variable in the model, the value listed in the table will be identical to the Wald test in the Testing Global 

Null Hypothesis table. 

The Analysis of Maximum Likelihood Estimates 

table lists the estimated model parameters, their 

standard errors, Wald tests, and odds ratios. 

The parameter estimates are the estimated coefficients 

of the fitted logistic regression model. The logistic 

regression equation is logit( p̂ ) = 0.7566 + 

0.4373*Gender, for this example.  

The Wald chi-square, and its associated p-value, tests 

whether the parameter estimate is significantly 

different from 0. For this example, both the p-values 

for the intercept and the variable Gender are 

significant at the 0.05 significance level. As in linear 

regression, hypothesis testing of the intercept term is 

uncommon. 

The Odds Ratio Estimates table shows that females 

have odds 1.549 times those of males of making a 

purchase. This table will be described further. 
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This table assesses the ability of the model 

(the Gender variable) to discriminate Big 

Spenders from Small Spenders. This 

table will be described in full detail.  

The Profile Likelihood Confidence 

Intervals are often preferred to the Wald, 

especially for relatively small sample sizes. In 

this case, the differences are very small. 

The Odds Ratios plot is for the Profile-

Likelihood Confidence Limits. The 95% 

confidence interval does not cross the 

reference line at 1. That is to be expected 

because the gender effect is statistically 

significant at the 0.05 alpha level. 

The Effect plot shows the difference between 

levels of the gender on the probability scale.  

 

Remember that in logistic regression you model the natural log of the odds and not the odds or probability 

directly. For interpretation, often the parameter estimates are converted into something more interpretable 

– an odds ratio. In order to understand this, write out the linear model predicting the natural log of the 

odds. In order to see that in terms of odds, the natural log is “undone” by exponentiation. Exponentiation 

of the right side of the equation must also be done to maintain equality. You thereby can look at the model 

in terms of odds and can estimate odds for females or males. The odds ratio is then the ratio of the odds of 

one group to the odds of another group. 

The odds ratio reported by the Logistic Regression task is for a 1-unit difference for a variable. Because 

you used reference cell coding for Gender and used Male as the reference level, females are coded 1 

and males are coded 0. Therefore, a 1-unit increase in Gender corresponds to the difference between 

females and males. 

83

Odds Ratio Calculation from the Current  
Logistic Regression Model
Logistic regression model:

Odds ratio (females to males):
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The odds ratio indicates that females have 1.549 times the odds to purchase 100 dollars or more, relative  

to males.  

The 95% confidence limits indicate that you are 95% confident that the true odds ratio is between 1.04 

and 2.31. Because the 95% confidence interval does not include 1.00, the odds ratio is significant at the 

.05 significance level. 

 If you want a different significance level for the confidence intervals, you can change the values 

of the confidence intervals in the options panel of the Logistic Regression task.  

The profile likelihood confidence intervals are different from the Wald-based confidence intervals. This 

difference is because the Wald confidence intervals use a normal approximation, whereas the profile 

likelihood confidence intervals are based on the value of the log-likelihood. These likelihood-ratio 

confidence intervals require much more computation but are generally preferred to the Wald confidence 

intervals, especially for sample sizes less than 50 (Allison 1999). 
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Odds Ratios for Categorical Predictors
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The odds ratio plot displays the odds ratio and confidence interval based on the method chosen  

in the Options panel. 

 

For a continuous predictor variable, the default odds ratio table measures the increase or decrease in odds 

associated with a one-unit difference on the predictor variable. For example, Age shows an odds ratio of 

1.052, which means that a person who is one year older has 5.2% ((1.052 – 1.000) * 100%) greater odds 

of purchasing $100 or more of items from the catalog than the younger person. The model assumes that 

this odds ratio is the same across all ages, so it does not matter if you compare a 21-year-old with a 20-

year-old or a 35-year-old with a 34-year-old. Notice that the confidence interval for Age does not include 

1, which corroborates the conclusion of significance from the p-value. 

If you additionally choose a conditional odds ratio method for confidence limits in the Options panel, you 

might choose units other than 1 for calculating odds ratios. For example, a 10-unit difference in age is 

associated with a 1.663 odds ratio, meaning that for any 10-year difference in age, the odds of being a big 

85

Odds Ratio Plot

85
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Odds Ratios for Continuous Predictors
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spender is multiplied by 1.663 for the older person, compared with the younger person. Another way of 

expressing that is that the odds for the 10-year-older person are 66.3% greater compared with the odds for 

the younger person. The 10-unit odds ratio could be calculated by hand by just raising the 1-unit odds 

ratio of 1.052 to the 10th power. 1.05210 =~ 1.663 after rounding. 

 

Where there is one continuous variable in the model, ODS Statistical Graphics can produce a plot of the 

modeled relationship between the continuous predictor and the response probability. 
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Predicted Probability Plots – Continuous
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Model Assessment: Comparing Pairs
 Counting concordant, discordant, and tied pairs is a 

way to assess how well the model predicts its own 

data and therefore how well the model fits.

 In general, you want a high percentage of concordant 

pairs and low percentages of discordant and tied 

pairs.

88

89

Comparing Pairs

89

To find concordant, discordant, and tied pairs, compare 

everyone who had the outcome of interest against 

everyone who did not.

< $100 $100 +
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For all pairs of observations with different values of the response variable, a pair is concordant if the 

observation with the outcome has a higher predicted outcome probability (based on the model) than  

the observation without the outcome. 

 

A pair is discordant if the observation with the outcome has a lower predicted outcome probability  

than the observation without the outcome. 

90

Concordant Pair

90

Compare a woman who bought more than $100 worth 

of goods from the catalog and a man who did not.

< $100 $100 +

P(100+) = .32 P(100+) = .42

The actual sorting agrees with the model.  

This is a concordant pair.

91

Discordant Pair

91

Compare a man who bought more than $100 worth of 

goods from the catalog and a woman who did not.

< $100 $100 +

P(100+) = .42 P(100+) = .32

The actual sorting disagrees with the model.

This is a discordant pair.
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A pair is tied if it is neither concordant nor discordant (the probabilities are the same). 

92

Tied Pair

92

Compare two women. One bought more than $100 worth 

of goods from the catalog, and the other did not.

< $100 $100 +

P(100+) = .42 P(100+) = .42

The model cannot distinguish between the two.

This is a tied pair.


