SASEG 3 Exercise: Fundamental Business Analytics --Exploring the Data, Charts, and Creating Reports using SAS Enterprise Guide

(Fall 2015)

Sources (adapted with permission)-

T. P. Cronan, Jeff Mullins, Ron Freeze, and David E. Douglas Course and Classroom Notes Enterprise Systems, Sam M. Walton College of Business, University of Arkansas, Fayetteville Microsoft Enterprise Consortium IBM Academic Initiative SAS[®] Multivariate Statistics Course Notes & Workshop, 2010 SAS[®] Advanced Business Analytics Course Notes & Workshop, 2010 Microsoft[®] Notes Teradata[®] University Network

For educational uses only - adapted from sources with permission. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission from the author/presenter.

Remember the Test Scores Problem?

As a project, students in Ms. Chao's statistics course are to assess whether the students at magnet schools (schools with special curricula) in their district have accomplished the goal that the board of education set of having their graduating class scoring on average 1200 combined on the Math and Verbal portions of the SAT (Scholastic Aptitude Test), a college admissions exam. Each section of the SAT has a maximum score of 800. Eighty students are selected at random from among magnet school students in the district. The total scores are recorded and each sample member is assigned an identification number.

	🔌 Gender	3 SATScore	IDNumber
1	Male	1170	61469893
2	Female	1090	3308119
3	Male	1240	6813759
4	Female	1000	3707039
5	Male	1210	6460879
6	Female	970	6071429
7	Male	1020	1690799
8	Female	1490	958929
9	Male	1200	9389189
10	Female	1260	8585939

Example: The identification number of each student (**IDNumber**) and the total score on the SAT (**SATScore**) are recorded. The data is stored in the **TestScores** data set.

A *distribution* is a collection of data values that are arranged in order, along with the relative frequency. For any kind of data, it is important that you describe the location, spread, and shape of your distribution using graphical techniques and descriptive statistics.

For the example, these questions can be addressed using graphical techniques.

- Are the values of **SATScore** symmetrically distributed?
- Are any values of **SATScore** unusual?

You can answer these questions using descriptive statistics.

- What is the best estimate of the average of the values of **SATScore** for the population?
- What is the best estimate of the average spread or dispersion of the values of **SATScore** for the population?

The Summary Statistics task is used for generating descriptive statistics for your data.

Recall SASEG1 Exercise – Fundamental Summary Statistics

Distributions – Histograms - Plots

Most parametric statistical procedures (those in which parameters are to be estimated) assume an underlying distribution. It is a good idea to look at your data to see if the distribution of your sample data can reasonably be assumed to come from a population with the assumed distribution. A histogram is a good way to get an idea of what the population distribution is shaped like.

Quite often, although not always, a normal distribution is assumed.

The normal distribution is a mathematical function. The height of the function at any point on the horizontal axis is the "probability density" at that point. Normal distribution probabilities (which can be thought of as the proportion of the area under the curve) tend to be higher near the middle. The center of the distribution is the population mean (μ). The standard deviation (σ) describes how variable the distribution is about μ . A larger standard deviation implies a wider normal distribution. The mean locates the distribution (sets its center point) and the standard deviation scales it.

An observation value is considered unusual if it is far away from the mean. How far is far? You may use the mathematical properties of the normal probability distribution function (PDF) to determine that. If a population follows a normal distribution, then approximately:

- 68% of the data falls within 1 standard deviation of the mean
- 95% of the data falls within 2 standard deviations of the mean
- 99.7% of the data falls within 3 standard deviations of the mean.

Often, values that are more than 2 standard deviations from the mean are regarded as unusual. Now you can see why. Only about 5% of all values are as far away from the mean as that. (Sometimes, only values more than 3 standard deviations away from the mean are closely examined as unusual.)

You will also use this information later when talking about the concepts of confidence intervals and hypothesis tests.

The distribution of your data might not look normal. There are infinitely different ways that a population can be distributed. When you look at your own data, you might take note of features of the distribution that indicate similarity or difference from the normal distribution.

In evaluating distributions, it is useful to look at statistical measures of the shape of the sample distribution compared to the normal.

Two such measures are skewness and kurtosis, which are defined over the next few pages.

A histogram of data from a sample drawn from a normal population will generally show values of skewness and kurtosis near 0 in SAS Enterprise Guide output.

One measure of the shape of a distribution is skewness. The *skewness* statistic measures the tendency of your distribution to be more spread out on one side than the other. A distribution that is approximately symmetric has a skewness statistic close to 0.

If your distribution is more spread out on the

- left side, then the statistic is negative, and the mean is less than the median. This is sometimes referred to as a *left-skewed* or *negatively skewed* distribution.
- right side, then the statistic is positive, and the mean is greater than the median. This is sometimes referred to as a *right-skewed* or *positively skewed* distribution.

Kurtosis is often very difficult to assess visually. The kurtosis statistic measures the tendency of your data to be distributed toward the center or toward the tails of the distribution. A distribution that is approximately normal has a kurtosis statistic close to 0 in SAS.

If your kurtosis statistic is negative, the distribution is said to be *platykurtic* compared to the normal. If the distribution is symmetric, a platykurtic distribution tends to have a smaller-than-normal proportion of observations in the tails, and/or a somewhat flat peak. A platykurtic distribution is often referred to as *light-tailed*. Rectangular, bimodal, and multimodal distributions tend to have low values of kurtosis.

If your kurtosis statistic is positive, the distribution is said to be *leptokurtic* compared to the normal. If the distribution is symmetric, a leptokurtic distribution tends to have a larger-than-normal proportion of observations in the extreme tails and/or a taller peak than the normal. A leptokurtic distribution is often referred to as *heavy-tailed*. Leptokurtic distributions are also sometimes referred to as *outlier-prone distributions*.

Distributions that are asymmetric also tend to have nonzero kurtosis. In these cases, understanding kurtosis is considerably more complex than in situations where the distribution is approximately symmetric.

The normal distribution actually has a kurtosis value of 3, but SAS subtracts a constant of 3 from all reported values of kurtosis, making the constant-modified value for the normal distribution 0 in SAS output. That is the value against which to compare a sample kurtosis value in SAS when assessing normality.

Graphical Displays of Distributions

You can produce three kinds of plots for examining the distribution of your data values:

- histograms
- normal probability plots
- box-and-whisker plots

A *normal probability plot* is a visual method for determining whether or not your data comes from a distribution that is approximately normal. The vertical axis represents the actual data values, and the horizontal axis displays the expected percentiles from a standard normal distribution.

The above diagrams illustrate some possible normal probability plots for data from a

- 1. normal distribution (the observed data follow the reference line)
- 2. skewed-to-the-right distribution
- 3. skewed-to-the-left distribution
- 4. light-tailed distribution
- 5. heavy-tailed distribution.

Box-and-Whisker plots (sometimes referred to simply as *Box Plots*) provide information about the variability of data and the extreme data values. The box represents the middle 50% of your data (between the 25th and 75th percentile values). You get a rough impression of the symmetry of your distribution by comparing the mean and median, as well as assessing the symmetry of the box and whiskers around the median line. The whiskers extend from the box as far as the data extends, to a distance of, at most, 1.5 interquartile range (IQR) units. If any values lie more than 1.5 IQR from either end of the box, they are represented in SAS by individual plot symbols.

The plot above shows that the data is approximately symmetric.

This demonstration illustrates how to create statistical tables, histograms, normal probability plots, and box plots using the Distribution Analysis task.

1. Click the **Input Data** tab under Summary Statistics from the previous demonstration to show the **TestScores** data table.

File > Open >Data--> Servers > SASApp-->Files > D: > ISYS 5503--> ISYS 5503 Shared Datasets

Sum	mary Statistics 👻			
	Input Data 🛄 Co	de 📋 Log 🔯 Resu	ults	
7	Filter and Sort 🖷 Q	uery Builder Data 👻 🛛	Describe 🝷 Graph	🔹 Analyze 👻 Export 👻 Send To 👻 📝
	🔌 Gender	🔞 SATScore 🔞	IDNumber	
1	Male	1170	61469897	
2	Female	1090	33081197	
3	Male	1240	68137597	
4	Female	1000	37070397	

2. Select <u>Describe</u> ⇒ <u>Distribution Analysis...</u>.

Sumr	Summary Statistics 👻					
.	Input Data 🛄 Co	de 📔 📋 Log 🛛 🔛 Res	sults			
7	Filter and Sort 🏨 Q	uery Builder Data 👻	Desc	ribe 👻 Graph 👻 Analyze 👻 Export 👻		
	🔌 Gender	🔞 SATScore 🔞		List Data		
1	Male	1170	55	Summary Statistics Wizard		
2	Female	1090	~			
3	Male	1240	Σ	Summary Statistics		
4	Female	1000		Summary Tables Wizard		
5	Male	1210		Summary rables wizard		
6	Female	970		Summary Tables		
7	Male	1020		List Report Wizard		
8	Female	1490				
9	Male	1200	3	Characterize Data		
10	Female	1260	đh	Distribution Analysis		
11	Male	1150	Ħ	One-Way Frequencies		
12	Female	1390		Table Analysia		
13	Male	1240		Table Analysis		

3. With <u>Task Roles</u> selected on the left, drag and drop **SATScore** to the analysis variables role.

JI.	Distribution Analysis for Local:ST192.TESTSCORES					
	Data Distributions	Data				
	Summary Normal Lognormal Exponential Weibull Beta Gamma Kernel Plots	Variables to assign: Name (a) Gender (a) SATScore (a) IDNumber		Task roles: Analysis variables Analysis variables SATScore Group analysis (Frequency count (Limit: 1) Classification variables (L		

4. Select <u>Appearance</u> under Plots on the left, and check the box next to <u>Histogram Plot</u>, <u>Probability Plot</u>, and <u>Box Plot</u>. Change the background color in each case to white.

dh	Distribution Anal	ysis for Local:S	T192.TESTSCORES					x
ſ	Data Distributions	Plots > Appea	arance					
	Summary Normal Lognormal Exponential	Note: Insets ar and quantile-q	e valid on histogram, probability uantile plots only.	Axis color:	Background color:	Axis width:		
	Weibull Beta Gamma	.	✓ Histogram Plot		T	1 💌		
	Kernel Plots Appearance	20 ¹¹	Probability Plot	•	V	1 💌		
	Inset Tables Titles		Quantiles plot	•	•	1 💌		
	Properties	† † †	🔽 Box plot		•	1	1	
			Text-based plots	Produces a ste on the number probability plot a by variable.			ding hal reis	
		Select the back	ground color.					4
	Preview code		Run	▼ Save			łelp	
-	,				Custor	m Colors		.::

5. Select <u>Inset</u> under Plots on the left, check the <u>Include inset</u> box, and check the boxes for <u>Sample</u> <u>Size</u>, <u>Sample Mean</u>,

Data Distributions	lysis for Local:SASUSER.TESTSCORES Plots > Inset			×
Summary Normal Lognormal Exponential Weibull Beta	 ✓ Include inset Inset statistics ✓ Sample size Sum of the weights 	Inset location:		
Gamma Kernel Plots Appearance Inset Tables Titles		Text:	Frame:	Background:
Properties	Inset format	Color:	Background	Inset text height:
	Select the statistics to include in the inset. Calculates a measure of the "heaviness of the tails" of a distrib	ution relative to the norm	al distribution, which has	a kurtosis of zero.
Preview code		Run ▼	Save Ca	incel Help

Standard Deviation, Skewness, and Kurtosis.

- 6. Click Browse... to change the format for the inset statistics.
- 7. Select <u>Numeric</u> under Categories. Find the BESTXw.d format and assign an overall width of <u>6</u> with <u>1</u> decimal place. This process will limit the reported output in the inset to 6 columns total, with one assigned after the decimal point.

🔯 Display format		×
Categories: None Numeric Date Time Date/Time Currency User Defined All	Formats: B8601DAw. B8601DNw. B8601DTw.d B8601DZw.d B8601TZw.d B8601TZw.d BESTDw.d BESTDw.d	OK Cancel
Attributes Overall width: Decimal places: Description trims lead/trailing blanks	BESTXw.d	
Example Value: 123.1 Output 1123	1. 1	11

8. Click OK

In order to draw a diagonal reference line for the normal probability plot and a normal curve for the histogram, select <u>Normal</u> under Distribution at left. Then check the box for <u>Normal</u> and change the color to dark red and the width to <u>3</u>.

III Distribution Ana	lysis for Local:SASUSER.TESTSCORES
Data Distributions	Distributions > Normal
Summary Normal Lognormal Exponential Weibull Beta Gamma Kernel Plots Appearance Inset Tables Titles Properties	✓ Normal ✓ Apply distribution to all variables Analysis variables: Mean (mu) Color: Standard Deviation (sigma) Type: Solid V
	Use Estimates
	Select the line width.
Preview code	Run ▼ Save Cancel Help

 Select <u>Tables</u> on the left. Deselect the boxes for <u>Basic confidence intervals</u> and <u>Tests for location</u>. Select the boxes for <u>Extreme values</u>, <u>Moments</u> and <u>Quantiles</u>. (You might need to click twice to select and deselect the tables.)

🚮 Distribution Ana	alysis for Local:SASUSER.TESTSCORES	×
Data Distributions Summary Normal Lognormal Exponential Weibull Beta Gamma Kernel Plots Appearance Inset Tables Titles Properties	Tables Basic confidence intervals Basic measures Basic measures Normal distribution Type: Two-sided Frequencies Modes Modes Modes Modes Distribution free Type: Symmetric Symmetric	
Preview code	Run 🔻 Save Cancel Help	

11. Change the titles and footnotes if desired.

12. Click <u>Run</u>.

Moments						
N	80	Sum Weights	80			
Mean	1190.625	Sum Observations	95250			
Std Deviation	147.058447	Variance	21626.1867			
Skewness	0.64202018	Kurtosis	0.42409987			
Uncorrected SS	115115500	Corrected SS	1708468.75			
Coeff Variation	12.3513656	Std Error Mean	16.4416342			

Basic Statistical Measures				
Location Variability				
Mean	1190.625	Std Deviation	147.05845	
Median	1170.000	Variance	21626	
Mode	1050.000	Range	710.00000	
		Interguartile Range	195.00000	

Quantiles (Definition 5)			
Level	Quantile		
100% Max	1600		
99%	1600		
95%	1505		
90%	1375		
75% Q3	1280		
50% Median	1170		
25% Q1	1085		
10%	1020		
5%	995		
1%	890		
0% Min	890		

Extrer	Extreme Observations		
Low	est	High	est
Value Obs		Value	Obs
890	69	1490	8
910	- 74	1520	42
970	6	1520	54
990	51	1590	70
1000	4	1600	25

	Extreme Values					
Lowest			H	lighest		
Order	Value Freq		Order	Value	Freq	
1	890	1	39	1390	1	
2	910	1	40	1490	1	
3	970	1	41	1520	2	
4	990	1	42	1590	1	
5	1000	1	43	1600	1	

The tabular output indicates that

- the mean of the data is 1190.625. This is approximately equal to the median (1170), which indicates the distribution is fairly symmetric.
- the standard deviation is 147.058447, which means that the average variability around the mean is approximately 147 points.
- the distribution is slightly skewed to the right (Skewness = +0.64).
- the distribution has slightly heavier tails than the normal distribution (Kurtosis = +0.42).
- the student with the lowest score is observation (row number) 69, with a score of 890. The student with the highest score is row number 25, with a score of 1600 (highest possible score for the SAT.

In the Quantiles table, Definition 5 indicates that PROC UNIVARIATE is using the default definition for calculating percentile values. You can use the PCTLDEF= option in the PROC UNIVARIATE statement to specify one of five methods. These methods are listed in the "Percentile Definitions" appendix.

The bin identified with the midpoint of 1100 has approximately 33% of the values. The skewness and kurtosis values are reported in the inset.

The normal probability plot is shown above. The 45-degree line represents where the data values would fall if they came from a normal distribution. The squares represent the observed data values. Because the squares follow the 45-degree line in the graph, you can conclude that there does not appear to be any severe departure from the normality.

Asking for the normal reference curve for the histogram also produces a set of tables relating to assessing whether the distribution is normal or not. There is a table with three tests presented: the Kolmogorov-Smirnov; Anderson-Darling; and Cramer-von Mises. In each case, the null hypothesis is that the distribution is normal. Therefore, high *p*-values are desirable.

Goodness-of-Fit Tests for Normal Distribution					
Test	Statistic		Statistic p Value		ue
Kolmogorov-Smirnov	D	0.08382224	Pr >	D	>0.150
Cramer-von Mises	W-Sq	0.09964577	Pr >	W-Sq	0.114
Anderson-Darling	A-Sq	0.70124822	Pr >	A-Sq	0.068

All three tests are not significant, implying that the distribution of **SATScore** is approximately normal.

There are two outliers (values beyond 1.5 interquartile units from the box).

Sporting Goods: Exploring and Creating a Report Using SAS Enterprise Guide

Exercise -- Sporting Goods Case Study: Exploring the Data and Creating a Basic Report

1. Use the **CUSTPRODORDERS** data set.

Recall where this is --- File > Open >Data--> Servers > SASApp-->Files > D: > ISYS 5503--> ISYS 5503 Shared Datasets

- 2. Select **Describe** ⇒ **Summary Statistics Wizard**.
- 3. Click Next>
- 4. Assign Total Order Revenue to the Summary statistics of (Analysis variable) role.
- 5. Assign **Country** to the For each value of (Classification variables) role.

Summary statistics of (Analysis variable):
Summary statistics of (Analysis variable):
Total Order Revenue
For each value of (Classification variable):
Country
Separate tables for values of (Group variable):
(Optional) Drop variables here.
Advanced
<back next=""> Finish 💌 Cancel Help</back>

The default statistics are MEAN, STD, MIN, MAX, and N. To get the revenue totals per country, you need the sum to be computed.

🗵 Summa	ry Statistics for SASApp:WORK.CUSTPRODORDERS	×
3 of 4	Specify statistics and results	<u>S</u> sas
Statistics: MEAN; STD; MIN; MAX; N		E dit
Results:		

7. Click

Edit...

. Select **Sum**. Clear all statistics except for **Sum** and **Number of observations**.

Mean		Г	Mode
Standard deviation	n	Г	Range
Standard error		1	Sum
☐ Variance		Г	Sum of weights
Minimum		7	Number of observations
Maximum		Г	Number of missing values
Decimal places:	Best fit		<u> </u>

Summary S	Statistics
-----------	------------

Results

The MEANS Procedure

Analysis Variable : Order Total			al
Country	N Obs	Sum	N
Germany	43	2640.55	43
Italy	12	536.8500000	12

Two countries are represented in the data: Italy and Germany. Germany accounts for greater revenue (2640.55) than Italy (536.85).

Graphical Exploration

Create graphs of the categories of sales summarized by quantity and by revenue. Which categories sell the most products? Which categories bring in the most total revenue?

- 1. Select the Input Data tab revealing the dataset once again
- 2. Select **Graph** \Rightarrow **Bar Chart Wizard**.
- 3. Click Next>
- 4. Assign **Product_Category** to the Bars role. Assign **Quantity** to the Bar height role.

🔟 Bar Chart for SASApp:	WORK.CUSTPRODORDERS			—
2 of 4 Assign ∨	ariables to roles			<u>s</u> sas
Horizontal bar o	hart		Sample chart:	
Bars:	A Product_Category	•		
1 🚹 Bar height:	🔞 Quantity	- Σ		
Optional				
🛄 🔲 Group by:	(iii) Order_ID	· · ·		
🕕 🔲 Depth:	i Order_ID	*		
🚹 🔲 Stack by:	🔞 Order_ID	v		
🛄 🔲 Chart by:	Order_ID		1 2 Product Categor	3 V
				,
				,
		<back next=""></back>	Finish 🔻 Cancel	Help

5. Verify that the Sum statistic is being used by clicking the **D** button to the right of the Bar height role.

	👖 Statistic
	Select statistic type Sum
	Average
	OK Cancel Help
6.	Click OK .
7.	Click Finish .

Outdoors accounts for the highest volume of sales. Team Sports is the lowest volume category.

8. Create a plot of the total order revenue for each category. Select **Modify Task**.

9.	Change the bar height to Total Order Revenue. Click	Finish
----	---	--------

SAS Enterp	orise Guide
?	Do you want to replace the results from the previous run? Choosing "No" will save the changes to a new task, named "Bar Chart1".
	Yes No Cancel

10. Click No so that you create a new graph.

While **Outdoors** was the highest volume category, it is the third highest revenue category, after **Indoor Sports** and **Shoes**. **Team Sports** is still the lowest revenue category.