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Simple Linear Regression

BN 09 2.
Objectives

m Explain the concepts of simple linear regression.

= Fit a simple linear regression using the Linear
Regression task.

m Produce predicted values and confidence intervals.
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In the previous section, you used correlation analysis to quantify the linear relationships between
continuous response variables. Two pairs of variables can have the same correlation, but very different
linear relationships. In this section, you use simple linear regression to define the linear relationship
between a response variable and a predictor variable.

The response variable is the variable of primary interest.

The predictor variable is used to explain the variability in the response variable.

IR0 T .
Simple Linear Regression Analysis

The objectives of simple linear regression are to

m assess the significance of the predictor variable
in explaining the variability or behavior of the
response variable

m predict the values of the response variable at given
values of the predictor variable.
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In simple linear regression, the values of the predictor variable are assumed fixed. Thus, you try to
explain the variability of the response variable given the values of the predictor variable.
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Fitness Example

PREDICTOR RESPONSE

RunTime - Oxygen_Consumption
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The analyst noted that the running time measure has the highest correlation with the oxygen consumption
capacity of the club members. Consequently, she wants to further explore the relationship between
Oxygen Consumption and RunTime.

She decides to run a simple linear regression of Oxygen Consumption versus RunTime.
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Simple Linear Regression Model

Response (Y)

T
Predictor (X)

The relationship between the response variable and the predictor variable can be characterized
by the equation Y=o+ B1X + €

where

Y
X

Bo

B:

response variable
predictor variable

intercept parameter, which corresponds to the value of the response variable when the predictor
is0

slope parameter, which corresponds to the magnitude of change in the response variable given
a one unit change in the predictor variable

error term representing deviations of Y about Bo + 1.X.
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Simple Linear Regression Model
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Because your goal in simple linear regression is usually to characterize the relationship between the
response and predictor variables in your population, you begin with a sample of data. From this sample,
you estimate the unknown population parameters (3o, 1) that define the assumed relationship between
your response and predictor variables.

Estimates of the unknown population parameters 3o and 1 are obtained by the method of least squares.
This method provides the estimates by determining the line that minimizes the sum of the squared vertical
distances between the observations and the fitted line. In other words, the fitted or regression line is as
close as possible to all the data points.

The method of least squares produces parameter estimates with certain optimum properties. If the
assumptions of simple linear regression are valid, the least squares estimates are unbiased estimates of the
population parameters and have minimum variance (efficiency). The least squares estimators are often
called BLUE (Best Linear Unbiased Estimators). The term best is used because of the minimum variance

property.

Because of these optimum properties, the method of least squares is used by many data analysts to
investigate the relationship between continuous predictor and response variables.

With a large and representative sample, the fitted regression line should be a good approximation of the
relationship between the response and predictor variables in the population. The estimated parameters
obtained using the method of least squares should be good approximations of the true population
parameters.
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The Baseline Model
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To determine whether the predictor variable explains a significant amount of variability in the response
variable, the simple linear regression model is compared to the baseline model. The fitted regression line
in a baseline model is a horizontal line across all values of the predictor variable. The slope of the

regression line is 0 and the intercept is the sample mean of the response variable, (Y ).

In a baseline model, there is no association between the response variable and the predictor variable.
Therefore, knowing the value of the predictor variable does not improve predictions of the response over
simply using the mean of the response variable for everyone.
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Explained versus Unexplained Variability
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To determine whether a simple linear regression model is better than the baseline model, compare the
explained variability to the unexplained variability.

Explained variability is related to the difference between the regression line and the mean of the
response variable. The model sum of squares (SSM) is the amount of
variability explained by your model. The model sum of squares is equal to

e

Unexplained variability is related to the difference between the observed values and the regression

line. The error sum of squares (SSE) is the amount of variability unexplained
A\

by your model. The error sum of squares is equal to Z(Yi -Y, ) .

Total variability is related to the difference between the observed values and the mean of the
response variable. The corrected total sum of squares is the sum of the
explained and unexplained variability. The corrected total sum of squares is

equal to Y(Y, —Y_)2 .

e The plot shows a seemingly contradictory relationship between explained, unexplained
and total variability. Contribution to total variability for the data point is smaller than contribution
to explained and unexplained variability. Remember that the relationship of
total=unexplained + explained holds for sums of squares over all observations and not
necessarily for any individual observation.
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Model Hypothesis Test

Null Hypothesis:

m The simple linear regression model does not fit
the data better than the baseline model.

m 3,=0
Alternative Hypothesis:

m The simple linear regression model does fit the
data better than the baseline model.

m 3,0
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If the estimated simple linear regression model does not fit the data better than the baseline model,

you fail to reject the null hypothesis. Thus, you do not have enough evidence to say that the slope of the
regression line in the population is not 0 and that the predictor variable explains a significant amount
of variability in the response variable.

If the estimated simple linear regression model does fit the data better than the baseline model, you reject
the null hypothesis. Thus, you do have enough evidence to say that the slope of the regression line in the
population is not 0 and that the predictor variable explains a significant amount of variability in the
response variable.
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Assumptions of Simple Linear Regression
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One of the assumptions of simple linear regression is that the mean of the response variable is linearly
related to the value of the predictor variable. In other words, a straight line connects the means of the
response variable at each value of the predictor variable.

The other assumptions are the same as the assumptions for ANOVA: the error terms are normally
distributed, have equal variances, and are independent.

yd The verification of these assumptions is discussed in a later chapter.
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The Linear Regression task

Linear Regression for Local:SASUSER.FITNESS x|
Data

Model

Statistics

Plats: Data sowce:  LocabSASUSER FITMESS Edit =

Predictions Task filter Nore =z
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Performing Simple Linear Regression with SAS EG

Because there is an apparent linear relationship between Oxygen Consumption and RunTime,
perform a simple linear regression analysis with Oxygen Consumption as the response variable.

1. With the Fitness data set selected, click Tasks = Regression = Linear Regression....

2. Drag Oxygen Consumption to the dependent variable task role and RunTime to the explanatory
variables task role.

Linear Regression for Local:SASUSER.FITHNESS

Drata

D ata
Model
Statizticz
Plots
Fredictians anables to assign: T ask roles:
Titles M arne | Dependent variable [Limit: 1] i
Properties £ Name @ Oxpgen_Consumption

A Gender E:-cplanatmi variables g |

@) PunTime | @

@ Age @ Group analysiz by
@Weight Frquency gnunt [.Lil.'nit: 1]
@ Dpgen_Consumption R elative weight [Limit; 1]
@ Fur_Pulze

@ Fest_Pulse

@ M airnurn_Pulze
iz Performance

& &
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3.  With Plots selected at the left, select Custom list of plots under Show plots for regression
analysis. In the menu that appears, uncheck the box for Diagnostic plots and check the box for
Scatter plot with regression line.

Linear Regression for Local:SASUSER.FITNESS

Data Plots

Model

Statiztics

Pl':'ts_ ] ¥ Show plats for regression analysis

Fredictions ) )
Titles Al appropriate plots far the current data selection
Froperties % Custom list of plots

Custom plats:

[ Higtagram plat of the rezidualz

[] Residualz by predicted values plot

[ Studentized residuals by predicted values plat
[] Obzerved by Predicted values plot

[ Plat Cook's D statistic

[ Studentized reziduals by leverage plot
[] Mormal quantile plot of the residuals
[ ResidualFit plot

[] Bow plat of the reziduals

[] Diagrostic plats

[] DFFITS plots

[[] DFBETAS plots

[] Residual plats

E Scatter plot with regreszion line

[T sSelect al

4. Change the title, if desired.

5. Click[_ Run |

Linear Regression Results

The REG Procedure
Model: Linear Regression_Model
Dependent Variable: Oxygen_Consumption

Number of Observations Read | 31
Number of Observations Used | 31

The Number of Observations Read and the Number of Observations Used are the same, indicating that
no missing values were detected for Oxygen Consumption and RunTime.
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The Analysis of Variance (ANOVA) table provides an analysis of the variability observed in the data
and the variability explained by the regression line.

Analysis of Variance

Sum of Mean
Source DF  Squares Square F Value Pr=F
Model 1 633.01458 B633.01458 84.00 <0001
Error 29 21853997  7.53586

Corrected Total | 30 851.55455

The ANOVA table for simple linear regression is divided into six columns.

Source labels the source of variability.
Model is the variability explained by your model (Between Group).
Error is the variability unexplained by your model (Within Group).

Corrected Total is the total variability in the data (Total).
DF is the degrees of freedom associated with each source of variability.

Sum of Squares is the amount of variability associated with each source of variability.

Mean Square is the ratio of the sum of squares and the degrees of freedom. This value corresponds
to the amount of variability associated with each degree of freedom for each source
of variation.

F Value is the ratio of the mean square for the model and the mean square for the error. This

ratio compares the variability explained by the regression line to the variability
unexplained by the regression line.

Pr>F is the p-value associated with the F value.

The F value tests whether the slope of the predictor variable is equal to 0. The p-value is small (less than
.05), so you have enough evidence at the .05 significance level to reject the null hypothesis. Thus, you can
conclude that the simple linear regression model fits the data better than the baseline model. In other
words, RunTime explains a significant amount of variability of Oxygen Consumption.

The third part of the output provides summary measures of fit for the model.

Root MSE 2.74515 R-Square | 0.7434
Dependent Mean | 47.37381 Adj R-Sq | 0.7345
Coeff Var 5.79442
R-Square the coefficient of determination also referred to as the R? value. This value is

e between 0 and 1.

e the proportion of variability observed in the data explained by the regression line. In
this example, the value is 0.7434, which means that the regression line explains 74% of
the total variation in the response values.

e the square of the multiple correlation between y and the x’s.

yd Notice that the R-square is the squared value of the correlation you saw earlier
between RunTime and Oxygen Consumption (0.86219). This is no
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Root MSE

Dependent
Mean

Coeff Var

Adj R-Sq

coincidence. For simple regression, the R-square value will be the square of the
value of the bivariate Pearson correlation coefficient.

the root mean square error is an estimate of the standard deviation of the response
variable at each value of the predictor variable. It is the square root of the MSE.

the overall mean of the response variable, Y .

the coefficient of variation is the size of the standard deviation relative to the mean. The
coefficient of variation is

Root MSE j

e calculated as ( *100

¢ a unitless measure, so it can be used to compare data that has different units of
measurement or different magnitudes of measurement.

the adjusted R? is adjusted for the number of parameters in the model. This statistic is
useful in multiple regression and is discussed in a later section.

The Parameter Estimates table defines the model for your data.

Parameter Estimates

Parameter Standard
Variable DF| Estimate Error t Value Pr= |t

Intercept | 1 8242494 385382 21.38 <.0001
RunTime | 1 -3.31085 036124 -917 <.0001

DF represents the degrees of freedom associated with each term in the model.

Parameter Estimate is the estimated value of the parameters associated with each term in the model.

Standard Error is the standard error of each parameter estimate.

t Value is the ¢ statistic, which is calculated by dividing the parameter estimates by their
corresponding standard error estimates.

Pr> [t is the p-value associated with the # statistic. It tests whether the parameter

associated with each term in the model is different from 0. For this example, the
slope for the predictor variable is statistically different from 0. Thus, you can
conclude that the predictor variable explains a significant portion of variability in
the response variable.

Because the estimate of 3,=82.42494 and B:1=-3.31085, the estimated regression equation is given by
Predicted Oxygen Consumption = 82.42494 - 3.31085 *(RunTime).
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Interpretation

The model indicates that an increase of one unit for Runtime amounts to a 3.31085 decrease in
Oxygen_ Consumption. However, this equation is appropriate only in the range of values you
observed for the variable RunTime.

The parameter estimates table also shows that the intercept parameter is not equal to 0. However, the test
for the intercept parameter only has practical significance when the range of values for the predictor
variable includes 0. In this example, the test could not have practical significance because RunTime=0
(running at the speed of light) is not inside the range of observed values.

Fit Plot for Oxygen_Consumption

60 o

=
2 50
E Ohservations 31
3 Parameters 2
g Error DF 29
UI MSE T.5359
5 R-Sguare 0.7434
= Adj R-Square 0.7345
=
AN

30

a 10 12 14
FunTime
Fit O 95% Confidence Limits - ----- 95% Prediction Limits

The Fit Plot produced by ODS Graphics shows the predicted regression line superimposed over a scatter
plot of the data. You will learn more about this plot next.
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Confidence and Prediction Intervals
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To assess the level of precision around the mean estimates of Oxygen _Consumption, you can produce
confidence intervals around the means. This is represented in the shaded area in the plot.

o A 95% confidence interval for the mean says that you are 95% confident your interval contains the
population mean of Y for a particular X.

o Confidence intervals become wider as you move away from the mean of the independent variable. This
reflects the fact that your estimates become more variable as you move away from the means of X and
Y.

Suppose that the mean Oxygen Consumption at a fixed value of Performance is not the focus. If
you are interested in establishing an inference on a future single observation, you need a prediction
interval around the individual observations. This is represented by the area between the broken lines in
the plot.

® A 95% prediction interval is one that you are 95% confident will contain a new observation.

o Prediction intervals are wider than confidence intervals because single observations have more
variability than sample means.



Regression Lines with Confidence Intervals

Return to the output from the last demonstration and open the Fit Plot.

Fit Plot for Oxygen_Consumption
G0 0
=
.E a0 -
E‘ Observations 31
7 Parameters 2
5 Error DF 29
5] MSE 7.5350
<! R-Square  0.7434
&= Adj R-Square 0.7345
=
[ T
30 RN
T T T T
a 10 12 14
RunTime
| = Fit O 95% Confidence Limits ------ 95% Prediction Limits |

The Confidence Interval for the mean is represented by the shaded region. The Prediction Interval for
observations is the area between the dotted lines. Model statistics are reported in the inset by default.
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Producing Predicted Values

What is Oxygen_Consumption when RunTime is 9, 10,
11, 12, or 13 minutes?

40

One objective in regression analysis is to predict values of the response variable given values of the
predictor variables. You can obviously use the estimated regression equation to produce predicted values,
but if you want a large number of predictions, this can be cumbersome.
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Producing Predicted Values

Produce predicted values of Oxygen Consumption when Performance is9, 10, 11, 12, or 13.

1. Modify the previous Linear Regression task in the project.

2. Uncheck the box for Show plots for regression analysis.

Drata

Linear Regression for Local:SASUSER.FITNESS

= L

Plots
b odel
Statizticz
PIDtS_ ] [ Show plats for regression analysis
Predictions % ; ;
Titles £ 4l apprapriate plots for the current data selection
Properties % Custonm list of plots

3. With Predictions selected at the left, check the box for Additional data and Prediction limits (to

generate prediction Confidence Intervals.

[rata

Linear Regression for Local:SASUSER.FITNESS

I Browse. .. |

Predictions
M odel
Statistics
Plaots — Data to predict —Save output data
Predictions - -
Titles I™ Original s v Predictions
Properties %.&dditiunal data [ Diagnostic statistics

ILDcaI:S.&SUSEH.F‘HEDLinHE Browse... |

—Additional ztatistics

[ Resi
™ Prediction limits

~ v Dizplay output and plats

[ Show predictions

Browse...

4. Click
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5. When the next window opens, select the NewFitness data set

amatha CAS[JSER library. Either

Open

] a-m| X o 3-

double-click the name of the data set or highlight it and click
= Open
Look in: |59 SASUSER
F]ENDOCANCER
ET ExACT
Servers E?j FISH
FIFITNESS

EMEEAHLIE_ELEIEK
EZiMEEDPREDICTIONS

ENEWEI?NESSPHED

6. Under Save output data, with Predictions checked, click

Browsze. ..

7. With that window open, overtype the default file name with NEWFITNESSPRED.

Save I

x
Savein | SASUSER o e-m| X & |BE-

|_Mame | Member Type | |ndexed | -
3405 Data
S arvers 3 ADST Data
E] BACKACHE Data

EBIRTH Data | |
FZ]BLADDER Data
E1BODYFAT Data
[]BODvFATZ D ata
7 CEPHALE=IM D ata
EICHOLERA Data
5 CHROME Data
7] COMPACT D ata
E] COMCRETE Data
F] DERM D ata
EADRUG Data
EELONGATED Data

F7 ENDOCANCER Data hd

File name: [NEWFITNESSPRED 1 =]

Filez af type: |f.'«ll File Types j

Cancel |

8. Click to close that window.
9. Click[ R |
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In the workspace, you will now see a tab for the newly created data set, NEWFITNESSPRED.

s Help |27 5 @ & oo Uy o X | 99 oo | [Mr | BegChapter 3 Demos -

Lineat Regression -

53 Input Data [2]| m Eu:u:lel B Lu:ugl £ Dul%:t[flata &) Results |

cﬁ Refresh mMudiFy Task | Expart = Send Ta < Create = Fublish | Properties

Linear Regression Results

10. Click that tab to reveal the data.

Linear Regression -

EE_E Input Data [2]| m D:ndel [%] Liog &3 Output Data |‘@ Hesultsl

5 EMDdiF\; Task |$iFilter and Sork %Query Builder | Daka » Describe » Graph » Analyze - | Export = Send To - |

L Hame /% Gender () RunTime | Age Vi) Weight [z} Dxygen_Consumption
3
10
11
12
13

ET | e L) | Pl | ek

11. Scroll all the way to the right to see the predictions column.

fnalyze = | Export ~ Send To - |

@ Rest_Pulze @ Hauimum_FuIse@ Performance @ predicted _Oxygen_Consumphion
b2 6272493
493163946
46.0055338
42 634685
39.3838302

yd The new data set contains columns for all variables in the analysis data set, but the values of
each record are set to missing for those variables that either were missing or did not exist in
the scoring data set. Also, note the 95% confidence limit for the prediction.

y d Choose only values within or near the range of the predictor variable when you are predicting
new values for the response variable. For this example, the values of the variable RunTime
range from 8.17 to 14.03 minutes. Therefore, it is unwise to predict the value of
Oxygen Consumption for a RunTime of 18. The reason is that the relationship between
the predictor variable and the response variable might be different beyond the range of your
data.



22

Producing Predicted Values — The quick and easy way

Similar to the previous method, we will produce predicted values of Oxygen Consumption when
run timeis 9, 10, 11, 12, or 13. However, this time, we will be manipulating the original input data
rather than adding another file to generate these predictions.

1. Click on the input data tab of the previous Linear Regression task in the project.

2. Scroll down to the last row of data and double click on the first column of the last row. You will see a

message as seen in the screenshot below.

1 Jane F . i = =02 £o.c 168 45
4 Harold M Enterprise Guide 169 48
5 Sammy M 166 50
6 Buffy F o Data is protected, Would you like to switch to Update mode? 186 )
7 Trent M Please note that changes made will be applied directly to the data. 170 53
g Jackie F 162 47
§ Ralph M 162 64
0 Jack M L L 168 57
1 Annie F TTUE T BT.2T T T 172 43
7 Kate F 11.12 45 £6.45 4475 176 51
3 Carl M 11.17 54 73.38 4508 156 62
4 Den M 11.37 44 89.47 4461 178 62
5 Effie F 115 43 6124 4792 170 52
% George M 11.63 a7 77.45 um 176 58
7 Iris F 11.95 ap 75.98 4568 176 70
B Mark M 12.63 57 7337 29.41 174 58
'8 Steve M 12.88 54 91.63 9.2 168 44
0 Vaughn M 13.08 44 81.42 1944 174 63
I M 14.03 45 B7.66 37.39 186 56
3. Click on the Yes button and the data will switch to the update mode.
4. Now right click on the row marker for the last row and you will see a menu tab appear as seen below.
21 Annie F 11.08 51 67.25 4512 172 43
22 Cut 11.12 45 66.45 475 176 51
2 Copy 11.17 54 79.38 4508 156 62
24 T et 11.37 44 8947 4461 178 62
25 S 115 48 61.24 4792 170 52
2€ 11.63 47 7745 4481 176 58
27 Delete rows 1195 40 75.93 4568 176 70
22 Insert rows... 12,63 7 73.37 3941 174 58
g Append row 12.38 54 91,53 3.2 168 44
0 Height.. 13.08 44 81.42 39.44 174 &3
31 14,03 45 B7.56 37.39 186 56
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5. Click on the Insert Rows option. We will be inserting rows below the last row, so we will select that
radio button for that option. We can insert any number of rows. In this case we will be inserting 5
rows i.e., based on the number of values that you are going to predict.

==
Insert Rows

Insert the new rows

) Above (®) Below

Mumber of rows: G = Cancel

X

6. We are predicting the dependent variable that is oxygen consumption using the independent variable
run time(for which the linear regression model was developed).

7. Double click on the first empty cell for RunTime and enter the value (s) for which the prediction will

be made.
@ MName @ Gender @ RunTime @ Lge @ weight @ D):,uf{lg_r«\agﬁ_g_lon @ Fun_Pulse @ Rest_Pulse @ MEXiT;Lém—Pu @ Performance

11 Bob M 10,07 40 75.07 45.31 185 62 185
12 Harriett F 10.08 43 7337 50.39 168 67 168
13 Jane F 1013 44 73.03 50.54 168 45 168
14 Harold M 10.25 48 9163 4677 162 48 164
15 Sammy M 10.33 B4 8312 51.85 166 50 170
16 Buffy F 1047 52 737N 4573 186 59 188
17 Trent M 105 52 8278 4747 170 53 172
18 Jackie F 106 47 79.15 4727 162 47 164
13 Ralph M 10.85 43 81.19 45.09 162 64 170
20 Jack M 10.95 51 69.63 4084 168 57 172
21 Annie F 11.08 51 67.25 4512 172 48 172
22 Kate F 11.12 45 66.45 4475 176 51 176
23 Carl M 1117 B4 79.38 46.08 156 62 165
24 Don M 11.37 44 8947 4461 178 62 182
25 Effie F 115 48 61.24 4792 170 52 176
26 George M 11.63 47 7745 44.81 176 58 176
27 lIris F 11.95 40 75.98 4568 176 70 180
28 Mark M 1263 57 7337 3941 174 58 176
29 Steve M 12.88 B4 9163 382 168 44 172
30 Vaughn M 13.08 44 8142 3944 174 63 176
31 William M 14.03 45 8766 3739 186 56 132
32 9

3 10

M 11

35 12

36 13

8. Select the results tab and then Modify Task.

9. This will throw up the dialogue box asking to protect
the data. Click Yes to continue to the modify task
dialogue box

10. Go to Plots

Enterprise Guide

o Data must be protected before proceeding. Continue?

11. Uncheck the box for Show plots for regression analysis.
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Linear Regression for Local:SASUSER.FITNESS

Data Plots

b odel

Statizticz

PIDtS_ ] [ Show plotz for regression analysis

Predictions % ; ;
Titles £ 4l apprapriate plots for the current data selection
Properties % Custonm list of plots

= L

12. Select Predictions at the left.

13. Check the box for Original Sample and Prediction limits (to generate prediction Confidence
Intervals.

14. Run the task now.

|# Linear Regression for D:\ISYS 5303-Freeze\ISYS 5503 Shared Datasets\fitness.sas7hdat [SASApp]

Data Predictions

Model

Statistics

Plats Data to predict Save output data

Criginal sample Predictions

Properties ] Additional data [ ] Diagnostic statistics

S |SASApp:WORK PREDLinReg||  Browse...
Additional statistics Display output and plots
[] Residuals
Sh dicti

Prediction limits W e

15. Notice the Results tabs has additional information as seen below. SASEG now reads 36 observations
but only uses the 31 observations to develop the model. It is able to identify the five values that have
missing fields in the oxygen consumption column.
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16. In order to retrieve the predicted
values, Click on the output data
tab and scroll to the bottom. You
will notice that the output data
gives the predicted values along
with the control limits similar to
the output of the previous method
as seen below.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: Oxygen_Consumption

Number of Observations Read 36
Number of Observations Used N
Number of Observations with Missing Values 5
Analysis of Variance
Sum of Mean
Source DF Squares Square| F Value Pr=F
Model 1) 633.01458 633.01438  84.00 <.0001
Error 29 21853997 7.53586

Corrected Total = 30 851.55455

Root MSE 2.74515 R-Square | 0.7434
Dependent Mean | 47.37581 Adj R-Sq | 0.7345
Coeff Var 5.79442

Parameter Estimates
Parameter| Standard

Variable |[DF Estimate Error| t Value Pr > |t]
Intercept | 1 8242494 3853382 21.38 <.0001
RunTime | 1 -3.31085 036124 -917 <.0001

Generated by the SAS System (SASApp', X64_ES08R2) on May 03, 2017 at 2:21:11 PM

3 Input Data m Code [E] Log £fd Output Data Gl Results - SAS Report @ Results - HTML r,'_ Results - PDF Resutts - RTF [ Results - Listing

[%] QMDdifyTﬂSk %Fi\terand Sort %Queryﬁuilder P Where

@ RunTime @ Age @ ‘wieight @ D’:ﬂﬁ&T;OH
13 1013 44 7303 50.54
14 10.25 42 9163 4677
15 10.33 54 8312 51.85
16 1047 52 737 4578
17 105 52 8278 4747
18 106 47 7915 4727
19 10.85 43 8119 4509
20 1095 51 69,63 40.84
il 11.08 51 6725 4512
22 112 45 6645 4475
23 17 54 79.38 4608
24 1.37 44 8347 4481
25 115 48 61.24 4792
26 1163 47 7745 4481
2 11.85 40 75.98 4568
28 1263 57 7337 3541
29 12.88 54 9163 382
30 13.08 44 8142 3544
3 14.03 45 8766 3739
32 9
33 10
34 11
35 12
36 12

168

Data ~ Describe = Graph = Analyze = | Export = Send To -

@ Run_Pulse @@ Rest Pulse @Maxwmum_Pu

i@ Performance @ predicted_Ox @ lelm_Dxygen

uclm_Oxygen
ygen_Cons.. _Consumpti ... @

I
_Consumpti .. @ C

Ise

45 168 67 ~ 48.885983433 47822773589 40949193277 4
42 164 &1 42 428630261 47450162547 43527198775 4
50 170 43 4B223B1247%  47187B22167 45248802752 ‘
59 188 7 47760252812 46748261262 4BTT2324362 4
53 172 51 47660967169 46650573333 48671361005 4
47 164 56 47329881682 46321447608 48338331776 4
64 170 65 46502168 45475107311 47528228688 4l
57 172 43 46171082523 45127473514 47214681822 4(
48 172 43 45740671403 446682596535 46.813045871 ‘
51 176 55 45608237212 44525450416 46651024003 :
62 165 40 45442604474 44345911022 46533477326 EH
62 182 58 4478062352 43.617659014 45543388026 3
52 176 45 443501124 43136551803 45.563672908 3t
58 176 50 4391970128 4265019155 45185211011 :
70 180 56 42860227754 41434884707 44285750802
58 176 20 40608846512 38753044003 42424645011 :
44 172 23 3a78113282 37.809054764  41.753210876 X
63 176 41 39118961866 37.018537621 41218386111 EY
56 182 30 35973649836 33236696157 38710603515 2¢
52627248322 51.081244412 54172254231 ‘
49316394553 4821855386 50413835246 ‘
46005535785 44551808844 470682657256 4
42634685016 41.242774786 44146535246 A
35283230248 37.335058502 41.432601593 EY

The output data set contains columns for all variables in the analysis data set, but the values

of each record are set to missing for those variables that either were missing or did not exist
in the scoring data set. Also, note the 95% confidence limit for the prediction.

Choose only values within or near the range of the predictor variable when you are predicting

new values for the response variable. For this example, the values of the variable RunTime
range from 8.17 to 14.03 minutes. Therefore, it is unwise to predict the value of

Oxygen Consumption for a RunTime of 18. The reason is that the relationship between
the predictor variable and the response variable might be different beyond the range of your

data.
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An Additional Exercise

1. Fitting a Simple Linear Regression Model

Use the BodyFat2 data set (the one created in the previous exercise) for this exercise.

a. Perform a simple linear regression model with PctBodyFat2 as the response variable and

b.

Abdomen as the predictor. Produce regression plots with confidence and prediction intervals.

1) What is the value of the F statistic and the associated p-value? How would you interpret this
with regards to the null hypothesis?

2) Write out the predicted regression equation.
3) What is the value of the R? statistic? How would you interpret this?

Produce predicted values for PctBodyFat2 when Abdomen is 80, 100 and 120. The
AbdomenPred data set in SASUSER contains the 3 observations needed.

1) What are the predicted values?

2) Is it appropriate to predict PctBodyFat2 when Abdomen is 140?



Fitting a Simple Linear Regression Model

a. Perform a simple linear regression model with PctBodyFat2 as the response variable and
Abdomen as the predictor. Produce regression plots with confidence and prediction intervals.

o With the BodyFat2 data set selected, click Tasks = Regression = Linear Regression....

e Drag PctBodyFat2 to the dependent variable task role and Abdomen to the explanatory
variables task role.

Linear Regressions for Local:SASUSER.BODYFATZ

D ata
kodel
Statigtic:

Data

Flats Data source:  Local SASUSER. BODYFAT 2
Predictions T azk filter: MHone

Titlez

Froperties

Wariables to azzign: T azk roles:

M arne |A Dependent varable [Limit: 1] ﬂ
(i Case ~{id) PotBodyFat2

@} PetBodyFatl Explanatom warigbles j
(@ PctBodyFat2 B homen T%

iz Density @ Group analwsiz by

(@ Age Frequency count [Limit: 1)

@ Weight Relative weight [Limit: 1)

iz Height

@ Adiopozity

iz FatFresiwit

i Meck |
iz Chest

{2 Abdomen

& &




e With Plots selected at the right, select Custom list of plots under Show plots for

regression analysis. From the menu that appears, uncheck the box for Diagnestic plots
and check the box for Scatter plot with regression line.

Linear Regression5 for Local:SASUSER.BODYFATZ2

Data Plots

Model

Statizticz

Pl':'ts_ . ¥ Show plats for regression analysis

Predictions ; ;
Titles ™ &l appropriate plotz for the cument data selection
Fropertiez %" Custom list of plots

Cuztom plots:

[ Hiztogram plat of the residualz

[] Residuals by predicted values plot

[ Studentized residualz by predicted values plot
[] Observed by Predicted walues plot

[[] Plot Cook's D statistic

[ Studentized reziduals by leverage plat
[] Marmal quantile plat af the residuals
[] Residual-Fit plot

[] Box plat of the reziduals

[ Diagrnostic plats

[ DFFITS plots

[[] DFBETAS plats

[] Residual plots

| Scatter plat with redr

[T Select al
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e Change the title, if desired.

e Click[ R |

Linear Regression Results

The REG Procedure
Model: Linear Regression_Model
Dependent Variable: PctBodyFat2

Number of Observations Read | 252
Number of Observations Used | 252

Analysis of Variance
Sum of Mean

Source DF Squares  Square F Value Pr>=F
Model 1 11632 11632 488.93 =.0001
Error 250 594746303 23.78983
Corrected Total 251 17573
Root MSE 4 87746 R-Square  0.6617
Dependent Mean = 19.15079 Adj R-Sq  0.6603
Coeff Var 2546884

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr= |t
Intercept 1 -39.28018 2.66034 -14.77 <0001

Abdomen 1 063130 0.02835 2211 <.0001
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Fit Plot for PctBodyFat2

60

40 .
. Observations 252
o Parameters 2
"_'gﬁ Errar OF 250
IIB MSE 23749
ks R-Square 0B617
o - Adj R-Square 06603

a0 100 120 140

Abdomen

Fit O 95% Confidence Limits - ----- 95% Prediction Limits

1) What is the value of the F statistic and the associated p-value? How would you interpret this
with regards to the null hypothesis?

The F value is 488.93 and the p-value is <.0001. You would reject the null hypothesis
of no relationship.

2) Write out the predicted regression equation.

From the parameter estimates table, the predicted value of
PctBodyFat2 =-39.28018 + 0.63130 * Abdomen.

3) What is the value of the R? statistic value? How would you interpret this?

The R? value of 0.6617 can be interpreted to mean that 66.17% of the variability
in PctBodyFat2 can be explained by Abdomen.



b. Produce predicted values for PctBodyFat2 when Abdomen is 80, 100 and 120.
The AbdomenPred data set in SASUSER contains the 3 observations needed.

e Modify the previous Linear Regression task in the project.

e  Uncheck the box for Show plots for regression analysis.

Linear Regression5 for Local:SASUSER.BODYFAT 2

Data Plots
tadel
Statistics
Pl':'ts_ . [t Show plats for regression analysis
Predichions % _ ;
Titles £ &)l appropriate plats for the cument data selection
Properties % Custom list of plats
= e o

o With Predictions selected at the left, check the box for Additional data and Prediction

limits.
Linear Regression5 for Local:SASUSER.BODYFATZ2
Data Predictions
b adel
Statizhics
Plats — D ata to predict
P_rEd":thS [ Original zample
Titles
Properties Iy Additional data
Browse. .. |

e C(Click| Browse..
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When the next window opens, select the AbdomenPred data set fro;

Either double-click the name of the data set or highlight it and click

Servers

Lookin: |59 S&SUSER

LABDOMEMERED

Under Save output data, with Predictions checked, click

tha CAQLISER library.
Open

Browse. ..

With that window open, overtype the default File name: with BODYFATPRED.

x
S ave in; | GAGLSER ] - | *® | -
Mame | tember Tepe | |ndexed | -
F71 ABDOMENFRED Data
Carvers Elans Data
B aDs D ata
5] BACKACHE Data | |
EjrIRTH D ata
EZ BLADDER Data
B BODFAT D ata
EBoDvraTZ Data
5 CEPHALE®IN D ata
2 CHOLERA D ata
=] cHROME D ata
E2d coMPaCT D ata
EZ] CONCRETE D ata
5] CONTCOMTEMTSFORBODYFATZ Data
EZ] DERM D ata
FiDRUG Data =
File name: |BE|DYFAT PRED. =l
Filez of type: |.-'-\II File Types j

Save I Cancel |

Click to close that window.

In the workspace, you will now see a tab for the newly created data set. Click the tab to open

the data table.
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e Scroll to the right to see the predicted values for PctBodyFat2.

Linear Regressionsl -

ia Input Data [2) | ﬁ Code | =]
Y [2] Modify Task | 7 Filker and

iz Abdomen | H{ fist |2 predicted_PctBodyFat?

1 a0 . 11.2241659
100 . 238502535

3 120 - : I6.4763412

1) What are the predicted values?
The predicted values at Abdomen=80, 100 and 120, are 11.22, 23.85 and 36.48, respectively.
2) Is it appropriate to predict PctBodyFat2 when Abdomen is 160?

No, because there are no data in the model data set with Abdomen greater than 148.1. You
should not predict beyond the range of your data.



