
  

SASEG 8A – Regression Assumptions 

 

 

 

 

 

 

 

 

 

 

(Fall 2015) 

 

 

 

 

 

 

 

 

 

Sources (adapted with permission)- 

T. P. Cronan, Jeff Mullins, Ron Freeze, and David E. Douglas Course and Classroom Notes 

Enterprise Systems, Sam M. Walton College of Business, University of Arkansas, Fayetteville 

Microsoft Enterprise Consortium 

IBM Academic Initiative 

SAS® Multivariate Statistics Course Notes & Workshop, 2010   

SAS® Advanced Business Analytics Course Notes & Workshop, 2010 

Microsoft® Notes 

Teradata® University Network 

 

For educational uses only - adapted from sources with permission.  No part of this publication may be 

reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 

mechanical, photocopying, or otherwise, without the prior written permission from the author/presenter. 

 



2  

Examining Residuals 

 

Recall that the model for the linear regression has the form Y=0 + 1X + . When you perform a 

regression analysis, several assumptions about the error terms must be met to provide valid tests of 

hypothesis and confidence intervals. The assumptions are that the error terms 

 have a mean of 0 at each value of the predictor variable 

 are normally distributed at each value of the predictor variable 

 have the same variance at each value of the predictor variable 

 are independent. 
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Assumptions for Regression
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Unknown 

Relationship

Y = 0 + 1X
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To illustrate the importance of plotting data, four examples were developed by Anscombe (1973). In each 

example, the scatter plot of the data values is different. However, the regression equation and the R2 

statistic are the same. 

In the first plot, a regression line adequately describes the data. 

8

Scatter Plot of Correct Model

Y = 3.0 + 0.5X

R2 = 0.67
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In the second plot, a simple linear regression model is not appropriate because you are fitting a straight 

line through a curvilinear relationship. 

 

In the third plot, there seems to be an outlying data value that is affecting the regression line. This outlier 

is an influential data value in that it is substantially changing the fit of the regression line. 

9

Scatter Plot of Curvilinear Model

Y = 3.0 + 0.5X

R2 = 0.67
9
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Scatter Plot of Outlier Model

Y = 3.0 + 0.5X

R2 = 0.67
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In the fourth plot, the outlying data point dramatically changes the fit of the regression line. In fact the 

slope would be undefined without the outlier. 

The four plots illustrate that relying on the regression output to describe the relationship between your 

variables can be misleading. The regression equations and the R2 statistics are the same even though the 

relationships between the two variables are different. Always produce a scatter plot before you conduct  

a regression analysis. 
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Scatter Plot of Influential Model

Y = 3.0 + 0.5X

R2 = 0.67
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To verify the assumptions for regression, you can use the residual values from the regression analysis. 

Residuals are defined as 

 
iii

YYr ˆ  

where 
i

Ŷ  is the predicted value for the ith value of the dependent variable. 

You can examine two types of plots when verifying assumptions: 

 the residuals versus the predicted values 

 the residuals versus the values of the independent variables  
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Verifying Assumptions
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The graphs above are plots of residual values versus predicted values or predictor variable values for four 

models fit to different sets of data. If model assumptions are valid, then the residual values should be 

randomly scattered about a reference line at 0. Any patterns or trends in the residuals might indicate 

problems in the model. 

1. The model form appears to be adequate because the residuals are randomly scattered about a 

reference line at 0 and no patterns appear in the residual values. 

2. The model form is incorrect. The plot indicates that the model should take into account curvature in 

the data. One possible solution is to add a quadratic term as one of the predictor variables. 

3. The variance is not constant. As you move from left to right, the variance increases. One possible 

solution is to transform your dependent variable. 

4. The observations are not independent. For this graph, the residuals tend to be followed by residuals 

with the same sign, which is called autocorrelation. This problem can occur when you have 

observations that have been collected over time. A possible solution is to use the Regression Analysis 

with Autoregressive Errors task. 
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Examining Residual Plots
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Besides verifying assumptions, it is also important to check for outliers. Observations that are far away 

from the bulk of your data are outliers. These observations are often data errors or reflect unusual 

circumstances. In either case, it is good statistical practice to detect these outliers and find out why they 

have occurred. 
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Detecting Outliers
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Residual Plots 

 

Using the FITNESS data set, invoke the Linear Regression task to test the regression 

model of Oxygen_Consumption against the predictor variables of RunTime.  

Produce the default graphics.  

1. Create a new process flow and rename it SASEG8A. 

2. Open the FITNESS data set. 

3. Select Analyze  Regression  Linear Regression…. 

 

4. Drag Oxygen_Consumption to the dependent variable task role and RunTime to the explanatory 

variables task role. 
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5. In order to visually check the assumption of constant variance, we use the Plots.  

With Plots selected at the left, click the radio button next to Custom list of plots.  

 

The box next to Diagnostic plots should already be checked. In addition, check the boxes next to 

Histogram Plot of the residuals, Residuals by predicted values plot, Residual plots, and Scatter 

Plot with residual line  

 

 

 

6. Click . 
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The plots produced are displayed below.  

Note Chapter (14.8) discussion as to how these plots can be used to detect problems (if any). 

 

 

 

The histogram of residuals helps you to find outliers and is one method to help with assessing the 

normality assumption. 
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The Residual by Predicted Value plot shows no pattern of residuals around the residual mean of 0.  

One of the assumptions of linear regression is constant variance across all levels of all predictors.  

This plot, along with the plots of residuals against predictors, helps you to assess that assumption of 

constant error variance. In this case, there is no clear pattern, indicating no strong evidence against the 

assumption of constant variance. 
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The Fit Diagnostics panel plot displays many of the plots seen in the previous discussions, but on a 

smaller scale. 

- The plot of the residuals by the predictor values (same as the plot on p. 13) in the model shows 

no patterns or trends. Again, this lends support to the validity of the constant variance assumption 

for this regression model.  Recall that independence of residual errors (no trends) is an 

assumption for linear regression, as is constant variance across all levels of all predictor 

variables. 

- The plot of the standardized residuals (RStudent) by the Predicted Value in the model also 

shows no patterns or trends; we expect 95% of the residuals to be between -2 and +2.  This lends 

support to the validity of the assumption that the error terms are distributed normally for this 

regression model. 
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- The plot of the residuals by the Quartile in the model shows the normal probability plot; we 

expect the plotted points to cluster closely around the 45 degree line to indicate a normal 

distribution.  The plot of the residuals against the normal quantiles is the quantile-quantile plot, 

also known as the Q-Q Plot. If the residuals are normally distributed, the plot should appear to 

follow closely a straight, diagonal line. If the plot deviates substantially from the reference line, 

then there is evidence against normality.  In this plot we see them closely clustered to the line; 

this lends support to the validity of the assumption that the error terms are distributed 

normally for this regression model. 

The plot shows little deviation from the expected pattern. Thus, you can conclude that the 

residuals do not significantly violate the normality assumption. If the residuals did violate the 

normality assumption, then a transformation of the response variable or a different model might 

be warranted. 

 

 

 

The plot of the Residuals by the independent variable (RunTime) does indicate randomness with 

no patterns or trends (see discussion on p. 7).  The model form appears to be adequate because the 

residuals are randomly scattered about a reference line at 0 and no patterns appear in the residual 

values. 
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The plot of the Dependent Variable (Oxygen_Consumption) by independent variable 

(RunTime) shows us a plot of the values in addition to the regression line.  This plot allows us to 

not only check the form of the model (linear in this case) but allows us to check for outliers. 

Observations that are far away from the bulk of your data are outliers.  There appears to be no 

outliers by viewing this plot. 

 

 

 

 

 

 


