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Concepts of Multiple Regression 

 

In simple linear regression, you can model the relationship between the two variables (two dimensions) 

with a line (one dimension). 

For the two-variable model, you can model the relationship of three variables (three dimensions) with  

a plane (two dimensions). 

 

If there is no relationship among Y and X1 and X2, the model is a horizontal plane passing through the 

point (Y = 0, X1 = 0, X2 = 0). 

49

Multiple Linear Regression with Two Variables
Consider the two-variable model

Y = 0 + 1X1 + 2X2 + 

where

Y is the dependent variable.

X1 and X2 are the independent or predictor 

variables.

 is the error term.

0, 1, and 2 are unknown parameters.

49
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Picturing the Model: No Relationship
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If there is a relationship among Y and X1 and X2, the model is a sloping plane passing through three 

points: 

 (Y = 0, X1 = 0, X2 = 0) 

 (Y = 0 + 1, X1 = 1, X2 = 0) 

 (Y = 0 + 2, X1 = 0, X2 = 1) 

51

Picturing the Model: A Relationship
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You investigate the relationship among k + 1 variables (k predictors + 1 response) using a k-dimensional 

surface for prediction. 

The multiple general linear model is not restricted to modeling only planar relationships. By using higher 

order terms, such as quadratic or cubic powers of the Xs or cross products of one X with another, surfaces 

more complex than planes can be modeled. 

In the examples, the models are limited to relatively simple surfaces. 

 The model has p = k + 1 parameters (the s), including the intercept, 0. 

52

The Multiple Linear Regression Model
In general, you model the dependent variable Y as a 

linear function of k independent variables, (the Xs) as

Y = 0 + 1X1 + ... + kXk + 

52
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If the estimated linear regression model does not fit the data better than the baseline model, you fail  

to reject the null hypothesis. Thus, you do not have enough evidence to say that all of the slopes of the 

regression in the population are not 0 and that the predictor variables explain a significant amount of 

variability in the response variable. 

If the estimated linear regression model does fit the data better than the baseline model, you reject the  

null hypothesis. Thus, you do have enough evidence to say that at least one slope of the regression in the 

population is not 0 and that at least one predictor variable explains a significant amount of variability in 

the response variable. 

 

53

Model Hypothesis Test
Null Hypothesis:

 The regression model does not fit the data better 

than the baseline model.

 1 = 2 = … = k = 0

Alternative Hypothesis:

 The regression model does fit the data better than 

the baseline model.

 Not all is equal zero.

53
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Techniques to evaluate the validity of these assumptions are discussed in a later chapter. 

 

The advantage of performing multiple linear regression over a series of simple linear regression models 

far outweighs the disadvantages. In practice, many responses depend on multiple factors that might 

interact in some way. 

SAS tools help you decide upon a “best” model, a choice that might depend upon the purposes of the 

analysis, as well as subject-matter expertise. 

57

Assumptions for Linear Regression
 The mean of the Ys is accurately modeled 

by a linear function of the Xs.

 The random error term, , is assumed to have 

a normal distribution with a mean of zero.

 The random error term, , is assumed to have 

a constant variance, 2. 

 The errors are independent.

57

58

Multiple Linear Regression versus Simple 
Linear Regression
Main Advantage

Multiple linear regression enables you to investigate the 

relationship among Y and several independent variables 

simultaneously.

Main Disadvantages

Increased complexity makes it more difficult to

 ascertain which model is “best”

 interpret the models.

58
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Even though multiple linear regression enables you to analyze many different experimental designs, 

ranging from simple to complex, you will focus on applications for analytical studies and predictive 

modeling. Other SAS Enterprise tasks, such as the Linear Models or Mixed Models tasks, are better 

suited for analyzing experimental data. 

The distinction between using multiple regression for an analytic analysis and prediction modeling  

is somewhat artificial. A model developed for prediction will probably be a good analytic model. 

Conversely, a model developed for an analytic study will probably be a good prediction model. 

Myers (1999) actually refers to four applications of regression: prediction, variable screening, model 

specifications, and parameter estimation. The term analytical analysis is similar to Myers’ parameter 

estimation application and variable screening. 

59

Common Applications
Multiple linear regression is a powerful tool for:

 Prediction – to develop a model to predict future 

values of a response variable (Y) based on its 

relationships with other predictor variables (Xs)

 Analytical or Explanatory Analysis – to develop an 

understanding of the relationships between the 

response variable and predictor variables.

59
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Prediction vs. Explanation 

 

Most investigators do not ignore the terms in the model (the Xs), the values of their coefficients (the s), 

or their statistical significance (the p-values). They use these statistics to help choose among models with 

different numbers of terms and predictive capabilities. 

 

60

Prediction
 The terms in the model, the values of their 

coefficients, and their statistical significance are 

of secondary importance.

 The focus is on producing a model that is the best at 

predicting future values of Y as a function of the Xs. 

The predicted value of Y is given by

60

kk XXY  ˆˆˆˆ
110  

61

Analytical or Explanatory Analysis
 The focus is on understanding the relationship 

between the dependent variable and the 

independent variables.

 Consequently, the statistical significance of the 

coefficients is important as well as the magnitudes 

and signs of the coefficients.

kk XXY  ˆˆˆˆ
110  

61
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An analyst knows from doing a simple linear regression that the measure of performance is an important 

variable in explaining the oxygen consumption capability of a club member. 

The analyst is interested in investigating other information to ascertain whether other variables are 

important in explaining the oxygen consumption capability. 

Recall that you did a simple linear regression on Oxygen_Consumption with RunTime as the 

predictor variable. 

The R2 for this model was 0.7434, which suggests that 25.64% of the variation in 

Oxygen_Consumption is still unexplained. 

Consequently, adding other variables to the model, such as Performance or Age, might provide  

a significantly better model. 

62

Multiple Regression Example

62

PREDICTORS RESPONSE

Performance

Runtime
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Oxygen_Consumption
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Fitting a Multiple Linear Regression Model (Two or More 
Independent Variables) 

 

First, let’s recall the Simple Linear Regression Model with  

  Oxygen_Consumption = f(RunTime) 

 

1. With the Fitness data set selected, click Tasks  Regression  Linear Regression…. 

2. Drag Oxygen_Consumption to the dependent variable task role and RunTime to the explanatory 

variables task role. 

 

 

3. Click .   
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The results were – 

 

 

 

 

The F value tests whether the slope of the predictor variable is equal to 0. The p-value is small (less than 

.05), so you have enough evidence at the .05 significance level to reject the null hypothesis. Thus, you can 

conclude that the simple linear regression model fits the data better than the baseline model. In other 

words, RunTime explains a significant amount of variability of Oxygen_Consumption. 

 

 

 

 

Note that the R-square is the squared value of the correlation you saw earlier between RunTime and 

Oxygen_Consumption (0.86219). This is no coincidence. For simple regression, the R-square value 

will be the square of the value of the bivariate Pearson correlation coefficient. 
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The Parameter Estimates table was as follows - 

 

 

 

Because the estimate of o=82.42494 and 1=-3.31085, the estimated regression equation is given by 

Predicted Oxygen_Consumption = 82.42494 - 3.31085 *(RunTime). 

The model indicates that an increase of one unit for Runtime amounts to a 3.31085 decrease in 

Oxygen_Consumption. However, this equation is appropriate only in the range of values you 

observed for the variable RunTime. 
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Multiple Linear Regression – (Two Independent Variables) 

 

Oxygen_Consumption = f(RunTime, Performance) 

 

Invoke the Linear Regression task and perform multiple linear regression analysis of 

Oxygen_Consumption with Performance and Runtime as explanatory variables. Interpret the 

output for the two-variable model. 

1. With the Fitness data set selected, click Tasks  Regression  Linear Regression…. 
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2. Drag Oxygen_Consumption to the dependent variable task role and RunTime and 

Performance to the explanatory variables task role. 

 

 

 

3. Uncheck the box for Show plots for regression analysis under Plots. 
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4. Click   . 

 

 

 

This model is statistically significant at the alpha level of 0.05 (p < .0001). 

 

 

 

Comparing this two variable model (RunTime, Performance)to the one variable model 

(RunTime)- the R2 for this model, 0.7590, is only slightly larger than the R2 for the model in which 

RunTime is the only predictor variable, 0.7434. 

The R2 always increases as you include more terms in the model. However, choosing the “best” model  

is not as simple as just making the R2 as large as possible. 

The adjusted R2 is a measure similar to R2, but it takes into account the number of terms in the model. 

 

The adjusted R2 for this model is 0.7418, slightly higher than the adjusted R2 of 0.7345 for the RunTime 

only model. This suggests, albeit mildly, that Performance does improve the model predicting 

Oxygen_Consumption. 
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Using the estimates for 0, 1, and 2 above, this model can be written as: 

Oxygen_Consumption = 71.52626  2.62163*Runtime + 0.06360*Performance  

 

The p-value for Performance is large (Pr > |t| = 0.1885), which suggests that the slope is not 

significantly different from 0.  

Note - the correlation between Performance and Oxygen_Consumption was large and statistically 

significant (r=.77890, p<.0001).  

How did this seeming contradiction occur?   The test for i=0 is conditioned on the other terms in the 

model. That is the reason that neither RunTime nor Performance have the same p-values (or 

parameter estimates) when used alone as when used in a model that includes both. The test for 1=0 (for 

Runtime) is conditional on (or adjusted for) X2 (Performance). Similarly, the test for 2=0 is 

conditioned on X1 (RunTime). 

The significance level of the test does not depend on the order in which you list the independent variables 

in the Task roles, but it does depend upon which set of variables are included in the model. 

In a later section, you will look more at the difficulties involved with analyzing and selecting the best 

models due to the relationships among predictor variables. 
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Exercises 

 

1.   Some practice (going above and beyond) -- Performing a Multiple Regression to 

discover the model 

a.   (One variable model) Using the BodyFat2 data set, run a regression of PctBodyFat2 on the 

variable Abdomen 

PctBodyFat2 = f(Abdomen) 

1)   Note the results – R2  (around 66%) as well as the coefficients. 

b.   (Multiple variable model) Using the BodyFat2 data set, run a regression of PctBodyFat2 on 

the variables Age, Weight, Height, Neck, Chest, Abdomen, Hip, Thigh, Knee, 

Ankle, Biceps, Forearm, and Wrist. 

PctBodyFat2 = f(Age, Weight, Height, Neck, Chest, Abdomen, Hip, 

Thigh, Knee, Ankle, Biceps, Forearm, and Wrist) 

1)   Compare the ANOVA table of this model with the the ANOVA table of one variable model 

with only Abdomen in a. above. What is different? 

2)   How do the R2 and the adjusted R2 of this model compare with the statistics for single 

variable model (Abdomen) in a.? 

3)   Did the estimate for the intercept change? Did the estimate for the coefficient of Abdomen 

change? 

c.   Simplifying the Model 

1)   Rerun the model in b., but eliminate all the variables with a p-value greater than .05 (those 

that are not significant).  

Hint: You should be removing from the model - Weight, Height, Chest, Hip, 

Thigh, Knee, Ankle, and Biceps.  

2)   Compare the output from this new model with the output from the Exercise b. model (above). 

3)   Did the p-value for the model change? 

4)   Did the R2 and adjusted R2 change? 

5)   Did the parameter estimates and their p-values change? 

Note – we should notice that the one variable model (Abdomen) has an R2 of about 66%; the 

full model with all variables has an R2 of about 74.8% (improved explanatory ability).  

However, the reduced model (c. above) has an R2 of about 73%.  A model with six (6) 

variables (Age, Neck, Chest, Abdomen, Forearm, and Wrist) is able to explain just 

as well as the full model – 73% compared to 74.8% (but with a smaller number of variables – 

six variables compared to thirteen variables).    


