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Examining Residuals

T 9T .
Assumptions for Regression
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Recall that the model for the linear regression has the form Y=o+ X + €. When you perform a
regression analysis, several assumptions about the error terms must be met to provide valid tests of
hypothesis and confidence intervals. The assumptions are that the error terms

e have a mean of 0 at each value of the predictor variable

e are normally distributed at each value of the predictor variable

have the same variance at each value of the predictor variable

are independent.
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Scatter Plot of Correct Model
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To illustrate the importance of plotting data, four examples were developed by Anscombe (1973). In each
example, the scatter plot of the data values is different. However, the regression equation and the R?
statistic are the same.

In the first plot, a regression line adequately describes the data.
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Scatter Plot of Curvilinear Model
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In the second plot, a simple linear regression model is not appropriate because you are fitting a straight
line through a curvilinear relationship.

Scatter Plot of Qutlier Model
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In the third plot, there seems to be an outlying data value that is affecting the regression line. This outlier
is an influential data value in that it is substantially changing the fit of the regression line.



Scatter Plot of Influential Model
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In the fourth plot, the outlying data point dramatically changes the fit of the regression line. In fact the
slope would be undefined without the outlier.

The four plots illustrate that relying on the regression output to describe the relationship between your
variables can be misleading. The regression equations and the R? statistics are the same even though the
relationships between the two variables are different. Always produce a scatter plot before you conduct
a regression analysis.
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Verifying Assumptions
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To verify the assumptions for regression, you can use the residual values from the regression analysis.
Residuals are defined as

A

r=yY -Y

where YAi is the predicted value for the i value of the dependent variable.

You can examine two types of plots when verifying assumptions:
o the residuals versus the predicted values

o the residuals versus the values of the independent variables
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Examining Residual Plots
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The graphs above are plots of residual values versus predicted values or predictor variable values for four
models fit to different sets of data. If model assumptions are valid, then the residual values should be
randomly scattered about a reference line at 0. Any patterns or trends in the residuals might indicate
problems in the model.

1.

The model form appears to be adequate because the residuals are randomly scattered about a
reference line at 0 and no patterns appear in the residual values.

The model form is incorrect. The plot indicates that the model should take into account curvature in
the data. One possible solution is to add a quadratic term as one of the predictor variables.

The variance is not constant. As you move from left to right, the variance increases. One possible
solution is to transform your dependent variable.

The observations are not independent. For this graph, the residuals tend to be followed by residuals
with the same sign, which is called autocorrelation. This problem can occur when you have
observations that have been collected over time. A possible solution is to use the Regression Analysis
with Autoregressive Errors task.
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Detecting Outliers
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Besides verifying assumptions, it is also important to check for outliers. Observations that are far away
from the bulk of your data are outliers. These observations are often data errors or reflect unusual

circumstances. In either case, it is good statistical practice to detect these outliers and find out why they
have occurred.



Residual Plots

Using the FITNESS data set, invoke the Linear Regression task to test the regression
model of Oxygen Consumption against the predictor variables of RunTime, Age, Run_Pulse and
Maximum Pulse (the model that was best based on Mallows’ Cp prediction criterion). Produce the
default graphics.

1. Create a new project and name it SASEG 9B Demos.

2. Open the FITNESS data set.

[& 5AS Enterprise Guide - EGBS.egp

File  Edit  %iew  Tasks Program  Tools  Help ||‘£|* ﬁ* % | [%
FITMESS -
-fog Data Creation %-‘i Filter and Sort: EE Query Builde
=[] Programs
L[] eobs00dD1 /s Mame A Gd
gqg Chapter 1 Demos 1 |Donna F
gqg Chapter 1 Exercizes 2 |Gracie F
gqg Chapter 2 Demas 3 |Luanne F
gqg Chapter 2 Exercizes 4 | Mimi F
gqg Chapter 3 Demos 5 | Chris b
gqg Chapter 3 Exercises E |Allen b
gqg Chapter 4 Demaz 7 |Mancy F
‘g?‘é‘ Chapter 4 E zercizes 8 |Paty F
Elgqg Chapter & Demos 9 |Suzanne F
""" £rd FITNESS 10 | Teresa F
3. Select Analyze = Regression = Linear Regression....
Analyze || Expart = Send To = |
ANCYA » @ I]xygen_[:unsumptim@ Run_FK
I| Regression r || l#  Linear Regression... |]
Mulkivariate b |5 NonlineafRegression. ..
Survival Analysis » | |8 Logistic Regression ...
Capability » [ Gereralized Linear Models. ..,
Control Charts L 48:5?
iy Pareto Chart... 2 45 44
ua A0.565
Time Series 3 A A6 67
@a Model Scoring... 7 453
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4.

Drag Oxygen Consumption to the dependent variable task role and RunTime, Age,
Run_Pulse, and Maximum Pulse to the explanatory variables task role.

Data Data
Model
Statiztics
Plats Data zource:  LocakSASUSER.FITHESS
Predictions Task filter: MHone
Titles
Properties
Wariables to azsign: T azk roles:
Mame | Dependent varable [Limit: 1] _}I
£ Name “edfg Dupgen_Consumption
@Gende[ Explamatary variables _5’|
. FumnT irme @
@ Age @ ~ge
@ weight @
@} Dpgen_Conzurnption 3| @.%Dp anal_l,ls by
ég:;—iﬂ;z Freguency count [Limit: 1)
= Relative weight [Limit: 1]
@ Maximum_Pulse El
i) Performance
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5. Click|__Run |
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Linear Regression Results

The REG Procedure

Model: Linear Regression_Model
Dependent Variable: Oxygen Consumption

Number of Observations Read
NMumber of Observations Used

Analysis of Variance

3
3

Sum of Mean
DF  Squares Square| F Value Pr=F
4 711.45087 17786272  33.01 <.0001
26| 14010368  5.38860

30 B851.55435

Root MSE 2.32134 R-Square | 0.8355

Dependent Mean | 47.37581 Adj R-5q | 0.8102

Coeff Var 489984

Parameter Estimates
Parameter Standard
Variable DF  Estimate Error| t Value Pr = |t
Intercept 1 9716952 11.65703 8.34 < 0001
RunTime 1 2775760 0.34159 -813 <0001
Age 1 -0.18903  0.09439  -2.00 0.0557
Run_Pulse 1 -0.34568 0118200 -2.92 0.0071
Maximum_Pulse 1 027188 0.13438 2.02 0.0534
Distribution of Residuals for Oxygen_Consumption Residual by Predicted for Oxygen_Consumption
A .
S .

Residual

Predicted Value

The histogram of residuals helps you to find outliers and assess the normality assumption.
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Note — review SASEG 8A (pp. 12 — 16) regarding interpretation of the plots — much of the
information regarding interpretation for a one variable model will be the same for the multiple
variable model.

The plot of the residuals versus the values of the independent variables, Runtime, Age, Run_Pulse,
and Maximum Pulse are produced by SASEG. They show no obvious trends or patterns in the
residuals. Recall that independence of residual errors (no trends) is an assumption for linear regression, as
is constant variance across all levels of all predictor variables (and across all levels of the predicted
values, which is seen below).
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Residual-Fit Spread Plot for Oxygen_Consumption

Fit-Mean Residual
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The diagnostic plots shown above will be described later in greater detail.

Q-Q Plot of Residuals for Oxygen_Consumption
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The plot of the residuals against the normal quantiles is shown above left (quantile-quantile plot, also
known as the Q-Q Plot). If the residuals are normally distributed, the plot should appear to follow closely

a straight, diagonal line. If the plot deviates substantially from the reference line, then there is evidence
against normality.
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The plot shows little deviation from the expected pattern. Thus, you can conclude that the residuals do not
significantly violate the normality assumption. If the residuals did violate the normality assumption, then
a transformation of the response variable or a different model might be warranted.

Residuals for Oxygen_Consumption Infl Diags ics for Oxygen_Cor
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Influence Diagnostics for Oxygen_Consumption
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More diagnostic plots and plots are included by default, as well as a box and whisker plot for residuals.
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6. In order to visually check the assumption of constant variance, you can reopen the last task by right-
clicking it and modifying it.

Elgqg Chapter & Demos

=1-E59 FITHESS
L pp—
o
-

Qpen F

Run Linear Regression?

[

MDdiFT\JSinear Regressiond

i

)
Select Input Data
Publish...
Add as Code Template

Create Task Template, .,

Create Stored Process, .,

7. With Plots selected at the left, click the radio button next to Custom list of plots.
The box next to Diagnostic plots should already be checked. In addition, check the boxes next to

Residuals by predicted values plot and Residual plots.

Linear Regressiond for Local:SASUSER.FITNESS

Data Plots

tadel

Statistics

PIDtS_ . ¥ Show plots for regrezsion analysis

Predictions ; ;
Titles ™ &l appropriate plots for the cument data selection
Properties %" Custom ligt of plats

Custarn plaks:

[ Hiztogram plat of the residuals
[w] Residuals by predicted values plot

[ Studentized rezidualz by predicted values plot
[] Observed by Predicted walues plot

[ Plat Cook's D ghatistic

[ Studentized regsiduals by leverage plat

[] Marmal quantile plat af the residuals

[] Residual-Fit plot

[] Box plat of the residuals

[w] Ciagnostic plots

[] DFFITS plats

[[] DFBETAS plats

| B ezidual plats

lh Scatter plat with regression line

[T Select al

8. Click and do not replace the results from the previous run.
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The plots produced are displayed below:

Residual by Predicted for Oxygen_Consumption
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The Residual by Predicted plot shows no pattern of residuals around the residual mean of 0. One of
the assumptions of linear regression is constant variance across all levels of all predictors. This plot,
along with the plots of residuals against predictors, helps you to assess that assumption. In this case,
there is no clear pattern, indicating no strong evidence against the assumption of constant variance.



17

Residual

-4

Residual

-2

-4

40

30

20

Fercent

Fit Diagnostics for Oxygen_Consumption

2
[=]
] [=]
a Q Q - -1
. %% o &
[:] o5 e g 0
=] ==} in
o @ o A
oo °
° 2
[=]
40 45 50 55
Predicted Value
o &0
[
@ =l
oo = 55
& =
=
M 2 50
O
o s
oo® %
o
& 40
[=]
20 i 1 2
Quantile
- 10
5
0
-5
-0
& 4 20 2 4 B

Residual

40

40

Fit—Mean

45 50 55
Predicted Value

45 50 55 60
Predicted Value

Residual

o
&
o

&

e

g

00 04 03

00 04 08
Proportion Less

RStudent

Cook's D

0.3

0z

01

0o

o
f " a
o
LT = R
o
ogo @@ o
o %o
(=] =]
o a0

01 02 03 04

Leverage

1] 10 20
Observation

Observations A

Parameters 2
Error DF 26
MSE 5.3886
R-Square 08353

Adi B-Sqguare 08102

The Fit Diagnostics panel plot displays many of the plots seen in the previous part of the
demonstration, but on a smaller scale.
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Residual by Regressors for Oxygen_Consumption
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The plots of the residuals by each of the predictor variables in the model show no patterns or trends.
Again, this lends support to the validity of the constant variance assumption for this regression model.

Maximum_Pulse
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Influential Observations (Any Outliers?) — Going Beyond

[T S .
Influential Observations

20

Recall in the previous section that you saw examples of data sets where the simple linear regression
model fits were essentially the same. However, plotting the data revealed that the model fits were
different.

One of the examples showed a highly influential observation like the example above.

Identifying influential observations in multiple linear regression is more complex because you have more
predictors to consider.

21

Diagnostic Statistics

Four statistics that help identify influential

observations are

m STUDENT residual
m Cook’s D
RSTUDENT residual
DFFITS.

The Linear Regression task
has options to calculate
statistics to identify
influential observations.

Selecting the box for
Residuals on the Predictions
pane creates the standardized
residuals, as well as several
others discussed previously.
Selecting the box for
Diagnostic statistics creates
the studentized residuals and
the DFFITS statistic, as well
as several others that are not
discussed, such as the Hat
Diagonal, Covariance Ratio,
and the DFBETAS.
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For our purposes, to detect outliers we will use the Studentized Residuals, Cook’s D statistic, and the
RSTUDENT residuals. Note that there are others. ..

Studentized Residuals - One way to check for outliers is to use the studentized residuals. These are
calculated by dividing the residual values by their standard errors. For a model that fits the data well and
has no outliers, most of the studentized residuals should be close to 0. In general, studentized residuals
that have an absolute value less than 2.0 could have easily occurred by chance. Studentized residuals that
are between an absolute value of 2.0 to 3.0 occur infrequently and could be outliers. Studentized residuals
that are larger than an absolute value of 3.0 occur rarely by chance alone and should be investigated.

Studentized Residual

Studentized residuals (SR) are obtained by dividing
the residuals by their standard errors.

Suggested cutoffs are as follows:

m |SR| > 2 for data sets with a relatively small number
of observations

m |SR| > 3 for data sets with a relatively large number
of observations

23




21

Cook’s D statistic - To detect influential observations, you can also use Cook’s D statistic. This statistic
measures the change in the parameter estimates that results from deleting each observation.

Identify observations above the cutoff and investigate the reasons they occurred.

e S e
Cook’s D Statistic

Cook’s D statistic is a measure of the simultaneous
change in the parameter estimates when an observation
is deleted from the analysis.

A suggested cutoff is D, >% , Where n is the sample size.

If the above condition is true, then the observation might
have an adverse effect on the analysis.

22
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RSTUDENT Residuals - Recall that studentized residuals are the ordinary residuals divided by their
standard errors. The RSTUDENT residuals are similar to the studentized residuals except that they are
calculated after deleting the i observation. In other words, the RSTUDENT residual is the difference
between the observed Y and the predicted value of Y excluding this observation from the regression.

If the RSTUDENT residual is different from the studentized residual for a specific observation, that
observation is likely to be influential. A suggested cutoff for |RSTUDENT]| residuals is greater than 3.

RSTUDENT
Y
/
Standardized
Standardized residual

residual with
* deleted

27
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An Exercise - Looking for Influential Observations

(,
{ /
\ - P

Generate the RStudent and Cook’s D influence statistics and plots for the prediction

model.

Save the statistics to an output data set and create a data set with only observations that exceed the
suggested cutoffs of the influence statistics.

Refer to the last task (linear model where you used the FITNESS data set, the regression model of
Oxygen_Consumption against the predictor variables of RunTime, Age, Run_Pulse and

Maximum Pulse).

1. Modify the last task by right-clicking the Project and selecting Modify....

2. With Plots selected at the left, check the boxes shown checked below in the Custom plots area.

yd RSTUDENT residuals are referred to as Studentized residuals in the task windows.

|# Linear Regression for C:\Work Files\ISYS 5503 online BA Certificate\Assignments\Datasets - Exce

Data
Model
Statistics
Plots
Predictions
Titles
Properties

Plots

Show plots for regression analysis

(71 Ml appropriate plots for the cument data selection
i@ Custom list of plots

Custom plots:

[ Histogram plot of the residuals

[ Residuals by predicted values plot
Studentized residuals by predicted values plot
[] Observed by Predicted values plot

Plot Cook's D statistic

[] Studertized residuals by leverage plot

[] Nomal quartile plot of the residuals

[ Residual-Fit plot

[ Box plot of the residuals

[ Diagnostic plots

[] DFFITS plots

[] DFBETAS plots b
[] Residual plots -

»

m

[7] Select al
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3. With Predictions selected at the left:
a. Check the box for Original sample under Data to predict.

b. Check Predictions and Diagnostic statistics under Save output data.

C. Check the box for Residuals under Additional statistics.

yd You can change the name and library of the data set where the diagnostic statistic

variables will be stored by clicking| EBrowze.. |inthe Save output data area.
Linear Regression911 for Local:SASUSER.FITNESS
Data Predichions
b odel
Statistics
Flats — Data to predict —Save output data
Predictions -
Tiles v Original zample ¥ Predictions
Froperties ™ Additional data v Diagnostic statistics

| Browss:. | LocakSA4SUSER PREDLINR - Browse... |

—&dditional statistics ~Iv Display output and plots
[ Residuals -
o [~ Show predictions
Prediction limits

4. Click and do not replace the results from the previous run.

Linear Regressiond11l -

B InpulDalaI B Cudel Z] Leg Eid Output Data |‘ﬂ Hesullsl
CB mModiFy Task |$?,F\Iter and Sark %Query Builder | Data - Describe - Graph - Analyze - | Export = Send To - |

@ Oxygen_Consumption @ Run_Pulse @ Rest_Pulse @ Marxi _Pulse @ Perf @ predicted_Oxygen_C " 3 stdp_Dxygen_Consumpbion
1 59.57 1E6 40 172 a0 559332897 091043968
2 E0LOE 170 43 186 94 57 8362043 1.6123022
3 54.3 156 45 168 83 56.7511803 1.07752127

Along with the other output from the task, a tab for the Output Data table appears. Select that tab to
see the data set created with all variables from the Fitness data set, along with several new

variables containing values for the diagnostic statistics and residuals, along with relevant standard
errors.
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Return to the Results tab.
Linear Regression Results
The REG Procedure
Model: Linear Regression_Model
Dependent Variable: Oxygen_Consumption
Number of Observations Read |31
Number of Observations Used | 31
Analysis of Variance
Sum of Mean
Source DF  Squares Square F Value Pr=F
Model 41 7T11.45087 177.86272  33.01 =.0001
Error 26| 140.10368 5.38860
Corrected Total | 30| 851.55455
Root MSE 2.32134 R-Square  0.8355
Dependent Mean | 47.37381 Adj R-Sq | 0.8102
Coeff Var 4. 89984

Parameter Estimates
Parameter Standard
Variable DF  Estimate Error| t Value Pr = |t
Intercept 1 97.16952 11.65703 8.34 <.0001
RunTime 1 2775760 034159 813 <.0001
Age 1 -0.18903 0.09439 -2.00 0.0557
Run_Pulse 1 -0.34568 011820 -2.92 0.0071
Maximum_Pulse 1 0.27188 013438 202 0.0534



RStudent by Predicted for Oxygen_Consumption
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The RStudent by Predicted plot shows only two values outside the range of [-2,2] and no values outside
the range of [-3,3]. These values are not different from what one would normally expect by chance from a

normally distributed population.



Cook's D for Oxygen_Consumption
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A horizontal reference line is drawn at the critical value of Cook’s D. Only one observation’s Cook’s D
value exceeded that cutpoint and merits further investigation.

5. Right-click the previous task and select Add as a Code Template.

EEQ:‘; Chapter 5 Demas
=-Eg FITHESS
ioli Linear Regressiond
il# Linear Fegressiondl

»
= Run Linear Regression911
El Modify Linear Regression911 E"'E?E Chapter 5 Demos
Select Inpuk Data EEE FITHESS
Publich. . ~|# Linear Regressiond

|i Linear Regrezziondl

- b i Linear Regressiond11
] Create Task Template.., ECI Programs

Create Skored Process.., |} 0 E.l:! Code For Linear Regrezsion311

| #dd as Cndeﬁemplate

Y




28

6. Double-click the node for the code in order to edit it and find the PROC REG section of the code.

TITLE;
TITLEl "Linear Regression Results";
FOOTNOTE ;
FOOTNOTE1l "Generated by the SAS System (& SASSERVERNAME, &SYSSCPL) on
$TRIM(%QSYSFUNC (DATE () , NLDATE20.)) at $TRIM(%SYSFUNC (TIME(),
NLTIMAP20.))";
PROC REG DATA=WORK.SORTTempTableSorted
PLOTS (ONLY) =RSTUDENTBYPREDICTED
PLOTS (ONLY) =COOKSD
PLOTS (ONLY) =DFFITS
PLOTS (ONLY) =DFBETAS
Linear Regression Model: MODEL Oxygen Consumption = RunTime Age
Run Pulse Maximum Pulse
/ SELECTION=NONE

.
14

OUTPUT OUT=SASUSER.PREDLINREGPREDICTIONSFITNES 0001l (LABEL="Linear

regression predictions and statistics for SASUSER.FITNESS")
PREDICTED=predicted Oxygen Consumption
RESIDUAL=residual Oxygen Consumption
STUDENT=student Oxygen Consumption
RSTUDENT=rstudent Oxygen Consumption
COOKD=cookd Oxygen Consumption
DFFITS=dffits Oxygen Consumption
H=h Oxygen Consumption
STDI=stdi_ Oxygen Consumption
STDP=stdp_ Oxygen Consumption
STDR=stdr Oxygen Consumption ;

RUN;

QUIT;

7. Make the following changes:
a. Add the option (LABEL) at the end of each PLOTS(ONLY) line.

PROC REG DATA=WORK.SORTTempTableSorted
PLOTS (ONLY) =RSTUDENTBYPREDICTED (LABEL)
PLOTS (ONLY) =COOKSD (LABEL)
PLOTS (ONLY) =DFFITS (LABEL)
PLOTS (ONLY) =DFBETAS (LABEL)
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b. Add the statement ID NAME; immediately above the OUTPUT statement.

ID NAME;
OUTPUT
OUT=SASUSER. PREDLINREGPREDICTIONSFITNES 0001 (LABEL="Linear

regression predictions and statistics for SASUSER.FITNESS")

8. Click| ¥ Rum | above the code window.

RStudent by Predicted for Oxygen_Consumption
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The RStudent plot shows two observations beyond 2 standard errors from the mean of 0. Those are
identified as Sammy and Jack. Because you expect 5% of values to be beyond 2 standard errors from the
mean (remember that these RStudent residuals are assumed to be normally distributed), the fact that you
have 2 that far out gives no cause for concern (5% of 31 is 1.55 expected observations). William and
Gracie have the most extreme “leverage” values, which mean that they are most extreme in the predictor

variable space.
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Cook's D for Oxygen_Consumption

Gracie

0.3

0.2

Cook's D

0.0 T o | TT‘P ? o T@ 0ol 9?0094

T T T
] 10

20 30

Chservation

The Cook’s D plot shows Gracie to be an influential point.
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How to Handle Influential Observations

1. Recheck the data to ensure that there are no data
errors.

2. If the data is valid, one possible explanation is that
the model is not adequate.

= A model with higher-order terms, such
as polynomials and interactions between
the variables, might be necessary to fit the
data well.

31

If the unusual data are erroneous, correct the errors and reanalyze the data.

Another possibility is that the observation, although valid, could be unusual. If you had a larger
sample size, there might be more observations like the unusual ones.

You might have to collect more data to confirm the relationship suggested by the influential observation.

In general, we try not to exclude data. In many circumstances, some of the unusual observations contain
important information. However, if you do choose to exclude some observations, include a description of
the types of observations you exclude and provide an explanation. Also discuss the limitation of your
conclusions, given the exclusions, as part of your report or presentation.
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Collinearity

T 0 T .
Graphical Example of Collinearity
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In the Fitness data set example, RunTime and Oxygen Consumption have a strong linear
relationship. Performance and Oxygen Consumption also have a strong linear relationship. In
addition, RunTime and Performance are linearly related to a large degree.

BRI 0 0 9T
Graphical Example of Collinearity

40

The goal of multiple linear regression with two predictor variables is to find a best fit plane through the
data to predict Oxygen_Consumption. This perspective shows a very strong relationship between the
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predictor variables RunTime and Performance. You can imagine that the prediction plane you are
trying to build is like a tabletop, where the observations guide the angle of the tabletop, relative to the

floor, like legs for the table. If the legs line up with one another, then the plane built atop will tend to be
unstable.

BN 09 2.
lllustration of Collinearity
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Here is another way of looking at the three dimensions of two predictor variables and a response variable.
Where should the prediction plane be placed? The slopes of the prediction plane relative to each X and
the Y are the parameter coefficient estimates.

X; and X, almost follow a straight line X; = X> in the (X, X») plane.
Why is this a problem? Two reasons exist.

1. Neither might appear to be significant when both are in the model; however, either might be
significant when only one is in the model. Thus, collinearity can hide significant effects. (The reverse
can be true as well: collinearity can increase the apparent significance of effects.)

2. Collinearity also increases the variance of the parameter estimates and consequently increases
prediction error.
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NI 0 9T .
lllustration of Collinearity
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This is a representation of a best-fit plane through the data.

NI 0 9T .
lllustration of Collinearity
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However, the removal of just one data point (or even just moving the data point) results in a very different
prediction plane (as represented by the lighter plane). This illustrates variability of the parameter
estimates when there is extreme collinearity.

When collinearity is a problem, the estimates of the coefficients are unstable. This means that they have
a large variance. Consequently, the true relationship between Y and the Xs might be quite different from
that suggested by the magnitude and sign of the coefficients.

Collinearity is not a violation of the assumptions of linear regression.
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Example of Collinearity

o

Generate a regression with Oxygen Consumption as the dependent variable and
Performance, Runtime, Age, Weight, Run_Pulse, Rest Pulse, and Maximum Pulse as
the independent variables. Compare this model with the Mallows pred1ct10n model from the | previous

section.

1. With the Fitness data set active, select Tasks = Regression = Linear Regression...

2. Drag Oxygen Consumption to the dependent variable role and all other numeric variables

to the explanatory variables role.

Data

Data source: LocalSASUSER.FITHESS
Tazk filter; MHaone

Yariables to azsian:

T azk rales:

I arme

‘@; M arne

A Gender

@ RunTime

i@ Age

i@ weight

@ Dspaen_Conzumption
. Run_Pulze

. Rest_Pulze

@ Maximum_Pulse

i@ Perfarmance

'i'j' Dependent wariable [Limit 1]

----- @ Dapgen_Consumption

| Explanaton vargbles
RunTime &

'@ Gru:uup anal_l,lsm |:._|,|
@ Frequency count [Limit: 1)
@ Relative weight [Limit: 1]

3. With Plots selected at the left, uncheck the box for Show plots for regression analysis.

Linear Regressionl10 for Local:SASUSER.FITNESS

Data Flots
b el
Statiztics
PIDtS_ . I Show plats for regression analysis
Predictions [,.\\r“s _ ;
Titles € &l appropriate plots for the curent data selection
Properties £ Custon list of plots
[Euzton mlobs:

4. Click[_ _Pun |
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Linear Regression Results

The REG Procedure
Model: Linear Regression_Model
Dependent Variable: Oxygen Consumption

Number of Observations Read | 31
Number of Observations Used | 31

Analysis of Variance

Sum of Mean

Source DF  Squares Square F Value Pr=F
Model 772266124 103.23732  18.42 <0001
Error 23 128.89331 5.60406
Corrected Total | 30 851.55435

Root MSE 2.36729 R-Square | 0.8486

Dependent Mean | 47 37581 Adj R-5q | 0.8026

Coeff Var 4.99683

Parameter Estimates
Parameter, Standard

Variable D Estimate Error t Value|Pr = |t
Intercept 131.78249 7220754 1.83 0.0810
RunTime -3.86019 293659 -1.31 0.2016
Age -0.46082  0.58660 -0.79 04401

Run_Pulse 0.36207 012324 -2.34 0.0074
Rest Pulse 0.015312) 0.06817  -0.22 0.8264
Maximum_Pulse 0.30102  0.13981 2.15 0.0420

F
1
1
1
Weight 1 -0.05812 0.06892 -0.84 04078
1
1
1
Performance 1 -0.12618) 030097 -0.42 0.6789

For the full model, Model F is highly significant and the R? is large. These statistics suggest that the
model fits the data well.

- However, when you examine the p-values of the parameters, only Run_Pulse and
Maximum Pulse are statistically significant.

- Recall that the 4-variable prediction model included Runtime; however, in the full model, this
same variable is not statistically significant (p-value=0.2016). The p-value for Age changed from
0.0557 to 0.4401 between the 4-variable model and the full model.

When you have a highly significant Model F but no (or few) highly significant terms, collinearity is a
likely problem.
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T 0 T .
Collinearity Diagnostics

The Regression task offers these tools that help quantify
the magnitude of the collinearity problems and identify
the subset of Xs that is collinear:

m Variance Inflation Factor (VIF)

m Collinearity Analysis

Collinearity Analysis without the Intercept
Tolerance

# VIF is the inverse of Tolerance

48

Selected task options:

VIF provides a measure of the magnitude of the collinearity (Variance
Inflation Factor).

Collinearity Analysis includes the intercept vector when analyzing the X'X matrix for
collinearity.

Collinearity (No Intercept) excludes the intercept vector.

The two Collinearity Analysis options also provide a measure of the magnitude of the problem as well as
give information that can be used to identify the sets of Xs that are the source of the problem. They are
not described in this course.
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T 0 T .
Variance Inflation Factor (VIF)

The VIF is a relative measure of the increase in the
variance because of collinearity. It can be thought
of as the ratio:

VIF, =
' 1-R?2

A VIF,; > 10 indicates that collinearity is a problem.

49

You can calculate a VIF for each term in the model.

Marquardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the
model.

VIF; = 1/(1 = R?), where R? is the R? of X, regressed on all the other Xs in the model.
For example, if the model is Y = X1 X2 X3 X4,i=1 to 4.

To calculate the R? for X3, fit the model X3 = X1 X2 X4. Take the R? from the model with X3 as the

dependent variable and replace it in the formula VIF; = 1/(1 — Rs?). If VIF; is greater than 10, X3 is
possibly involved in collinearity.
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Collinearity Diagnostics

Invoke the Linear Regression task and use the VIF option to assess the magnitude of the

collinearity problem and identify the terms involved in the problem.

1. Reopen the previous task by right-clicking it and selecting Modify....

2. With Statistics checked at the left, check the box next to Variance inflation values in the
Diagnostics area.

Data
hadel
Statiztics
Flats
Predictions
Titles
Properties

Statistics

Linear Regressionl0 for Local:SASUSER.FITNESS

—Detailz on estimates
[ Standardized regression coefficients

[ Sum of zquarez. Type 1
[ Sum of zquarez, Type 2
[ Carmrelation matrix of estimates
[T Covariance matiz of estimates

[ Confidence limits for parameter estimates

Confidence |evel; 953 -

—Diagnostics
[ Colinearity analysis

[ Callinearity analysis without the intercept
[ Tolerance values for estimates

Iy Wariance inflation walues

%H eteroscedasticity test

[ Asymptotic covariance matrix

™ Durhin®w atson statistic

— Comelations
[ Patial comelations

[ Semi-partial comelations

3. Click and do replace the results from the previous run.

SAS Enterprise Guide

Do o wank to replace the resulks from the previous run?

Choosing "Mo" will save the changes to a new task, named "Linear Regression1 01",

Mo Cancel

x|
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Partial Output
Parameter Estimates
Parameter Standard Variance
Variable D Estimate Error| t Value Pr= |t Inflation

F
Intercept 1 131.78249 7220754 1.83 0.0810 0
RunTime 1 -3.86019) 293659 -1.31| 0.2016| B8.86231
Age 1 -0.46082 058660 -0.79| 04401 51.01176
Weight 1 -0.05812) 006892 -0.84| 0.4073 1.76383
Run_Pulse 1 -0.36207 012324 -2.94| 0.0074  5.34498
Rest_Pulse 1 -0.01512) 006817 -0.22 0.8264 1.44425
Maximum_Pulse | 1 0.30102  0.13981 215 0.0420 B.78753

1

Performance 0.12619  0.30097  -0.42| 0.6788| 162.85399

The only change in the output from the previous run of the task is the final column of the Parameter
Estimates table. There is now a listing of Variance Inflation values for each predictor variable.

Marquardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the
model.

Some of the VIFs are much larger than 10. 4 severe collinearity problem is present. At this point there are
many ways to proceed. However, it is always a good idea to use some subject-matter expertise. For
instance, a quick conversation with the analyst and a view of the data coding scheme turned up this bit of
information.

We just happen to know - The variable Performance was not a measured variable. The
researchers, on the basis of prior literature, created a summary variable, which is a weighted
function of the three variables, RunTime, Age, and Gender. This is not at all an uncommon
occurrence and illustrates an important point. If a summary variable is included in a model along
with some or all of its composite measures, there is bound to be collinearity. In fact, this can be
the source of great problems.

- If the composite variable has meaning, it can be used as a stand-in measure for all three
composite scores and you can remove the variables RunTime and Age from the analysis.

A decision was made to remove Performance from the analysis. Another check of collinearity is
warranted.



4. Reopen the previous task.

5. Remove Performance from the list of explanatory variables by highlighting it and clicking .

Data

Data zource: Local:SASISER. FITHESS

T azk filter: MHone
" anables to aszign: T azk roles:

I arme | Dependent wariable [Linit: 1] S |
A Name ~{izl) Owygen_Consumption

{s‘}, Gender Explanatony variables L |

@ PRunTime | (@ RunTime
i) Age @ Age

@ Dwpgen_Conzumption @ Fiun_Pulse

@Hun_F'mge _l @ FRest_Pulze

-z Masimum_Pul
@Hest_F'ulse @ awimnLnm_Pulze

Group analysis b
{2 Maimum_Pulze @ & P anabels

Frequency count [Limit: 1]
@ Performance Rrelative weight (Limit: 1)

6. Click and do not replace the results from the previous run.

SAS Enterprise Guide x|

& . Doyouwantto replace the results From the prewvious run?
\Q/’

Choosing "Mo" will save the changes to a new task, named "Linear Regression1 01",

Yes Nh Zancel
Al
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Mumber of Observations Read |31
NMumber of Observations Used | 31

Analysis of Variance

Sum of Mean
Source DF  Squares Square F Value Pr=F
Model 6 72167605 12027934 2223 <000
Error 24 12987891 541160
Corrected Total | 30 851.55455
Root MSE 2.32629 R-Square | 0.8475
Dependent Mean | 47 37581 Adj R-Sq | 0.8094
Coeff Var 491028
Parameter Estimates
Parameter Standard Variance
Variable DF| Estimate Error tValue Pr= [t|| Inflation
Intercept 1 10196313 12.27174 8.31 <.0001 0
RunTime 1 -2.63994 0.38532 -5.85 <0001 1.58432
Age 1 -0.21848 0.09850 -2.22 0.0363 1.48953
Weight 1 -0.07503) 0.05492  -1.37 01845 1.15973
Run_Pulse 1 -0.36721 012050 -3.05 0.0055 8.46034
Rest Pulse 1 -0.01952 0.06619 -0.29 07706 1.41004
1

Maximum_Pulse 030457 01374 222 0.0360 8.73535

The greatest VIF values are much smaller now. The variables Maximum Pulse and Run_Pulse are
also collinear, but for a natural reason. The pulse at the end of a run is hlghly likely to correlate with the
maximum pulse during the run. One might be tempted simply to remove one variable from the model, but
the small p-values for each indicate that this would adversely affect the model.
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7. Reopen the previous task.

8. Remove Maximum Pulse from the list of explanatory variables by highlighting it and clicking .

D ata

T azk filter: MHaone

Data zource:  LocalSASUSER FITHESS

Yariables to azsign:

T ask roles:

M arme

I Dependent variable [Limit: 1]

£ Name

A Gender

@ RunTirme

@ Age

{2 weight

@ Dwpgen_Conzumption
{2 Run_Pulse

(i) Rest_Pulze

{2 Masimum_Pulze

{2 Performance

i) Run_Pulse
_l i) Rest_Pulse
@ Group analysiz by
Frequency count [Limit: 1]
E Relative weight [Limit: 1)

e |2

9. Click and do not replace the results from the previous run.

SAS Enterprise Guide

Lo wou want o replace the results from the previous run?

Yes Nh | Cancel
M

X

Choosing "Mo" will save the changes to a new task, named "Linear Regressionl 01",
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Number of Observations Read 31
Number of Observations Used | 31

Source
Model
Error

Corrected Total

Root MSE 2.50257 R-Square | 0.8161
Dependent Mean | 47 37581 Adj R-S5q | 0.7794

Coeff Var 5.28238

Parameter Estimates

Parameter Standard
Variable DF| Estimate Error| t Value Pr = |t]
Intercept 1 11546115 1146893 1007 <.0001
RunTime 1 271594 041288 -6.58 <0001
Age 1 -0.276500 010217 271 0.0121
Weight 1 -0.05300 0.0%811  -0.91 0.3704
Run_Pulse 1 -012213) 0.05207  -2.35 0.0272
Rest Pulse 1 -0.02485 007116 -0.35 0.7298

With Maximum Pulse removed, all of the VIF values are low, but the R-Square and Adj R-Sq values

Analysis of Variance

Sum of
DF  Squares
5 694.98323

23 136.57132
30| 831.35433

Mean

Square F Value Pr=F

138.99665 2219
6.26285

were reduced and the p-value for Run-Pulse actually increased!

??Even with collinearity still present in the model, it might be advisable to keep the previous model

including Maximum Pulse.??

Collinearity can have a substantial effect on the outcome of a stepwise procedure for model selection.
Because the significance of important variables can be masked by collinearity, the final model might not
include very important variables. This is why it is advisable to deal with collinearity before using any

automated model selection tool.

e Just FYI - there are other approaches to dealing with collinearity. Two techniques are ridge
regression and principle components regression. In addition, re-centering the predictor variables
can sometimes eliminate collinearity problems, especially in a polynomial regression and

ANCOVA models.

=.0001

Variance
Inflation

0
1.57183
1.38477
1.12130
1.36493
1.40819



45

EENETTIID 020 .
An Effective Modeling Cycle

)

.(1) Candidate
Preliminary

Analysis

Model
Selection

@)
Collimearity;and
Influentiall@bservation
Detection

©)
Assumption
Validation

) (6)

Model Predic_tion
Revision Testlng 7

54

(1) Preliminary Analysis — This step includes the use of descriptive statistics, graphs, and correlation
analysis.

(2) Candidate Model Selection — This step uses the numerous selection options in the Linear Regression
task to identify one or more candidate models.

(3) Assumption Validation — This step includes the plots of residuals and graphs of the residuals versus
the predicted values. It also includes a test for equal variances.

(4) Collinearity and Influential Observation Detection — The former includes the use of the VIF
statistic, condition indices, and variation proportions; the latter includes the examination of Rstudent
residuals, Cook’s D statistic, and DFFITS statistics.

(5) Model Revision — If steps (3) and (4) indicate the need for model revision, generate a new model by
returning to these two steps.

(6) Prediction Testing — If possible, validate the model with data not used to build the model.
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Comprehensive Exercise — but, Optional

1. Assessing Collinearity

Using the BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric variables
in the file.

a. Determine whether there is a collinearity problem.

b. Ifso, decide what you would like to do about that. Will you remove any variables? Why or why
not?

Solutions to Exercises

1. Examining Residuals

Assess the model obtained from the final forward stepwise selection of predictors for the BodyFat2
data set. Run a regression of PctBodyFat2 on Abdomen, Weight, Wrist, and Forearm.

Create plots of the residuals by the four regressors and by the predicted values and a normal quantile-
quantile plot.

Invoke the Linear Regression task to test the regression model of PctBodyFat2 against the
predictor variables of Abdomen, Weight, Wrist, and Forearm.

a. Do the residual plots indicate any problems with the constant variance assumption?
o Create a new process flow and rename it Chapter 5 Exercises.

EEQE Chapter & Demos
=B FITNESS
o Linear Regressiond
- Linear Regresziondl
l# Linear Fegressiond11
l# Linear Fegressiont
¢ Linear Reagreszsiond 01
bl Linear Fegression 071
=7 Programs

e @ Code For Linear Regression31
EQE iChapter 5 Exercizes |

e Open the BodyFat2 data set.

e Select Analyze = Regression = Linear Regression....
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Analyze v|| Export ~ Send To - |

ANOWE v | |@ Weight |3 Height
I| Regression » | [#  Linear Regression. ..

Multivariate b e Nu:unlineﬁegressinn. g

Survival Analysis ¥ |1 Logistic Regression ...

Capaility " 0" Generalized Linear Madels. .,

Zontrol Charts 3 ;E - :g; I;;Trf';
g Pareto Chart... 2 176 72h

25 131 74

Time Series Pl 19225 FisRs

@w Maodel Scoring. .. 26 186.25 745

e Drag PctBodyFat2 to the dependent variable task role and Abdomen, Weight, Wrist,

and Forearm to the explanatory variables task role.

Data

T ask filker: M one

Data zource: Local SASUSER. BODYFAT 2

Yanables to azsign:

T azk roles:

M ame

Iil 7| Dependent varable [Lirmit: 1]

{izd Density
iz Age

iz weight
iz Height
@} Adiopozity
{2 FatFreeiwit
i Meck

izl Chest

iz Asbdomen
@ Hip

iz Thigh

@ Knee

i Ankle

{2 Biceps
(id Forearm
{izd Wizt

@ E=planatary variables
iz Abdaomen

E}l 5 Group analysiz by

i Frequency cournt [Limit 1)
i Relative weight [Limit 1)

2|
Rd




o With Plots selected at the left, click the radio button next to Custom list of plots.

The box next to Diagnostic plots should already be checked. In addition, check the boxes next
to Residuals by predicted values plot and Residual plots.

Linear Regressiond for Local:SASUSER.FITNESS

Drata

Plots
bodel
Statizticz
Pl':'ts_ ] ¥ Show plats for regression analysis
Fredictions ) )
Titles i~ all appropriate plats for the cumrent data selection
Froperties %" Custom list of plots

Custom plots;

[] Hiztagram plat of the residuals
[w Residuals by predicted values plat

[] Studentized residuals by predicted walues plot
[] Obzerved by Predicted values plat

[] Plot Cook's D statistic

[] Studentized residuals by leverage plat

[] Mormal quantile plat of the residuals

[] Residual-Fit plot

[] Bow plat af the residuals

[wl Diagnostic plots

[] DFFITS plots

[[] DFBETAS plots

| Fesidual plots

(i Scatter plot with regression line

[ Select al

o Click[__Fun |



Residual

Residual by Predicted for PctBodyFat2
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Residual by Regressors for PctBodyFat2
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It does not appear that the data violate the assumption of constant variance.
b. Are there any outliers indicated by the evident in any of the residual plots?

There are a few outliers for Wrist and Forearm and one clear outlier in each of Abdomen and
Weight.

c. Does the quantile-quantile plot indicate any problems with the normality assumption?
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Residual
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Fit Diagnostics for PctBodyFat2
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i ; dov gt b
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Ohservation

Observations 252

Parameters 5
Error DF 247
MSE 18.859

R-Square 0.735
Adj B-Square 0.7307

The quantile-quantile plot in the center left panel shows that the normality assumption seems to be
met.
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Generating Potential Outliers

Using the BodyFat2 data set, run a regression model of PctBodyFat2 on Abdomen, Weight,
Wrist, and Forearm.
a. Use plots to identify potential influential observations based on the suggested cutoff values.

e Reopen the last task by right-clicking in it in the Project Tree and selecting Modify....

o With Plots selected at the left, check the boxes that are checked below in the Custom plots

area.
Linear Regression91 for Local:SASUSER.FITMESS
Data Plots
b odel
Statistics
PlDtS_ ) IV Show plats for regression analysiz
Predictions ) )
Titles i~ &l appropriate plots for the current data selection
Froperties " Custom list of plots

Cuztom plots:

[] Higtogram plat of the reziduals

[] Residuals by predicted values plot

[w] Studentized residuals by predicted wvalues plat
[] Obzerved by Predicted values plaot

[w] Plot Cook's D statistic

[] Studentized residuals by leverage plat
[] Mormal quantile plat of the residuals
[] Residual-Fit plat

[] Bow plat of the residuals

[ Diagnostic: plots

[w] DFFITS plots

E\IsE ezidual plotz

[] Scatter plat with regreszion line

[T Select al

e With Predictions selected at the left:
—  Check the box for Original sample under Data to predict.

—  Check Predictions and Diagnostic statistics under Save output data.

—  Check the box for Residuals under Additional statistics.

e Click Save and do not replace the results from the previous run.
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e Right-click the saved task icon in the Project Tree and select Add as Code Template.

Elgqg Chapter & Exercizes
=-fg BODYFATZ
bl Linear Regress

Fun Linear Regressionlll

Modify Linear Regressionl11l

E’ﬂ El_i @ Select Input Data
T asks by Categary L Publish...
[
#dd as Code Template |I
D ata | . P

Iﬁ Filter and Sort Create Task&emplate...

B o Dl #£1  Create Stored Process...

e Edit the code template in the PROC REG section by adding the option (LABEL) at the end of
each PLOTS(ONLY) line and the statement ID CASE; immediately after the next semi-colon.

PROC REG DATA=WORK.SORTTempTableSorted
PLOTS (ONLY) =RSTUDENTBYPREDICTED (LABEL)
PLOTS (ONLY) =COOKSD (LABEL)
PLOTS (ONLY) =DFFITS (LABEL)
PLOTS (ONLY) =DFBETAS (LABEL)

ID CASE;

e Click | B Run | above the code window.
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RStudent by Predicted for PctBodyFat2
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There are only a modest number of observations further than 2 standard error units from the

mean of 0.
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Cook's D

Cook's D for PctBodyFat2
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There are 10 labeled outliers, but observation 39 is clearly the most extreme.
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DFFITS

Influence Diagnostics for PctBodyFat2
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The same observations are shown to be influential by the DFFITS statistic.
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Influence Diagnostics for PctBodyFat2
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DFBETAS are particularly high for observation 39 on the parameters for weight and forearm
circumference.

3. Assessing Collinearity

Using the BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric variables
in the file.

a. Determine whether there is a collinearity problem.
e Open the BodyFat2 data set.

e Select Analyze = Regression = Linear Regression....

finalyze =|| Export + Send To = |
BNOVA » | |@ Weight |3  Height
I| Regression S |||£ Linear Regression. ..
Mulkivariate b | e NonlineatRegression. ..
Survival Analysis b ||z Logistic Regression ...
Capailicy " " Generalized Linear Models. .
Conkrol Charts » ;E - U-|EL; .;;;E
[fm Pareto Chart... 25 176 725
25 19 74
Time Series Y 1z 198.25 735
&=  Model Scoring. . 25 186.25 74.5
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shown to the explanatory variables task role.

e Drag PctBodyFat2 to the dependent variable task role and all other continuous variables

Data

Data zource: LocalSASUSER.BODYFAT 2
T ask filker: Maone

Wariables to azsign:

Tazk roles:

M ame |
@} Case

iz PctBodyFati
iz PctBodyF at?
iz Density

@ 20e

@ Weight

@ Height

@ Adioposzity
@ FatFreeia't
. Heck

. Chest

. Abdamen
@ Hip

@ Thigh

@ Kree

@ Arkle

@ Biceps

. Farearm

. "Wrigt

& &

OO AN

@ Dependent variable [Limit; 1] _}l
i) PotBodyFat2
,'7|

4 Group analysis by
i Frequency count [Limit 1]
i Relative weight [Limit 1]
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o With Statistics selected at the left, check the box for Variance inflation values in the
Diagnostics area.

Data
todel
Statishics
Plots
Predictions
Titles
Properties

Linear RegressionlZ for Local:SASUSER.BODYFATZ2

Stahtighics

—Details on estimates
[~ Standardized regression coefficients
[ Surm of squares, Type 1
[ Surm of squares, Type 2
[ Conelation matrix of estimates
[T Covariance matris of estimates

[ Corfidence limits for parameter estimates

Canfidence [evel: a5 -

— Diagnoshics

[ Collinearity analysis

[ Collinearity analysis withaut the intercept

[T Tolerance walues for estimates

% Wariance inflation walues
Heteroscedasticity test

[ Asymptotic covariance matrs

[~ Durbin-wiatson statistic

—Comelations
[ Partial corelations

[ Semi-partial comelations

o Click__Fun_|



Linear Regression Results

The REG Procedure
Model: Linear Regression_Model
Dependent Variable: PctBodyFat2

Number of Observations Read | 252
Number of Observations Used | 252

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr=F
Model 13 13159 1012 22506  54.50 <0001
Error 238 442006401 18.57170
Corrected Total 231 17579

Root MSE 4.30949 R-Square | 0.7486

Dependent Mean | 13.15079|Adj R-5q | 0.7348

Coeff Var 22 50293

Parameter Estimates
Parameter| Standard Variance

Variable |DF  Estimate Error| t Value Pr= |t]| Inflation
Intercept 1 -21.35323 2218616 -0.96) 0.33c8 0
Age 1 0.06457 0.03219 201 0.0460 222447
Weight 1 -0.09638 006185 -1.56 01205 4465251
Height 1 -0.04394 017870 -0.25 08060 29391
Neck 1 047547 023557 -2.02 00447 443192
Chest 1 -0.01718) 010322 -017 08679 1023468
Abdomen | 1 0.95500  0.09016 1059 =<.0001 1277553
Hip 1 -0.18853) 014479 -1.30 0.1940 1454193
Thigh 1 0.24835 014617 1.70 0.0906) 7.95866
Knee 1 0.01395 024775 0.06 09552 482530
Ankle 1 017788 022262 0.80 04251 192410
Biceps 1 018230 017250 1.06 02917 3.67091
Forearm 1 0.45574  0.19930 229 00231 219193
Wrist 1 -1.65450) 053316 -3.10 00021 3.34840

There seems to be high collinearity with Weight and less so with Hip, Abdomen, Chest,
and Thigh.

b. If so, decide what you would like to do about that. Will you remove any variables? Why
or why not?

The answer is not so easy. True, Weight is collinear with some set of the other variables, but
as you have seen before in your model-building process, Weight actually ends up as a relatively
significant predictor in the “best” models.



