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Examining Residuals
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Recall that the model for the linear regression has the form Y=0,+ 0:X + O. When you perform a

regression analysis, several assumptions about the error terms must be met to provide valid tests of
hypothesis and confidence intervals. The assumptions are that the error terms

» have a mean of 0 at each value of the predictor variable
« are normally distributed at each value of the predictor variable O have the same
variance at each value of the predictor variable O are independent.
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Scatter Plot of Correct Model
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To illustrate the importance of plotting data, four examples were developed by Anscombe (1973). In each

example, the scatter plot of the data values is different. However, the regression equation and the R?
statistic are the same.

In the first plot, a regression line adequately describes the data.
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Scatter Plot of Curvilinear Model
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In the second plot, a simple linear regression model is not appropriate because you are fitting a straight
line through a curvilinear relationship.

Scatter Plot of Outlier Model
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In the third plot, there seems to be an outlying data value that is affecting the regression line. This outlier
is an influential data value in that it is substantially changing the fit of the regression line.



Scatter Plot of Influential Model
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In the fourth plot, the outlying data point dramatically changes the fit of the regression line. In fact the
slope would be undefined without the outlier.

The four plots illustrate that relying on the regression output to describe the relationship between your
variables can be misleading. The regression equations and the R?statistics are the same even though the
relationships between the two variables are different. Always produce a scatter plot before you conduct
a regression analysis.

T A
Verifying Assumptions
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To verify the assumptions for regression, you can use the residual values from the regression analysis.
Residuals are defined as r OY OY"
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where Y is the predicted value for the i value of the dependent variable.
You can examine two types of plots when verifying assumptions:

« the residuals versus the predicted values
« the residuals versus the values of the independent variables
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The graphs above are plots of residual values versus predicted values or predictor variable values for four
models fit to different sets of data. If model assumptions are valid, then the residual values should be
randomly scattered about a reference line at 0. Any patterns or trends in the residuals might indicate
problems in the model.

1. The model form appears to be adequate because the residuals are randomly scattered about a
reference line at 0 and no patterns appear in the residual values.

2. The model form is incorrect. The plot indicates that the model should take into account curvature in
the data. One possible solution is to add a quadratic term as one of the predictor variables.

3. The variance is not constant. As you move from left to right, the variance increases. One possible
solution is to transform your dependent variable.

4. The observations are not independent. For this graph, the residuals tend to be followed by residuals
with the same sign, which is called autocorrelation. This problem can occur when you have
observations that have been collected over time. A possible solution is to use the Regression Analysis
with Autoregressive Errors task.
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Detecting Outliers

Outlier —
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Besides verifying assumptions, it is also important to check for outliers. Observations that are far away
from the bulk of your data are outliers. These observations are often data errors or reflect unusual
circumstances. In either case, it is good statistical practice to detect these outliers and find out why they
have occurred.



Residual Plots

Using the FITNESS data set, invoke the Linear Regression task to test the regression
model of Oxygen Consumption against the predictor variables of RunTime, Age, Run_Pulse and
Maximum Pulse (the model that was best based on Mallows’ Cp prediction criterion). Produce the
default graphics.

1. Create a new project and name it SASEG 9B Demos.

2. Open the FITNESS data set.

{& SAS Enterprise Guide - EGBS.egp
File Edit Wiew Tasks Program Tools Help Ié' ﬁ-' ’%_I é
FITMESS ~

= gqg Data Creation %"‘i Filter and Sort % Query Builde

|_| Programs
: gﬂ egbs00d01 @ Name @ Gqg
I 8@ Chapter 1 Demos 1_|Donna F
I #-8eg Chapter 1 Exercises 2 |Grace ~F
I 8@ Chapter 2 Demos 3 Luanne iF
8@ Chapter 2 Exercises 4 | Mimi ‘F

. SQ Chiaiaer 3 Demes e ——
. % Chapter 3 Exsrcises = Allen AR O
. 8@ Ehaptecid Denos = DD SUrE Lok Ty
I 8@ Chapter 4 Exercises 8

= 8@ Chapter 5 Demos 9 |Suzanne

"B FITNESS G

3. Select Analyze = Reqgression = Linear Regression...

Analyze vI| Export v SendTo ~ | /]
ANOYA » @ nygen_Consumplim@ Run_F
[ regression > || . Linear Regression... ]]
Multivariate P |l Nonlineé?&egression...
Survival Analysis » | £ Logistic Regression ...
Capability y | i Generalized Linear Models. ..
& IO
Control Charts o 48 87
lin  Pareto Chart... L )3 f m———
8
Toos caies S
&>  Model Scoring... 7

4. Drag Oxygen Consumption to the dependent variable task role and RunTime, Age,
Run_Pulse, and Maximum Pulse to the explanatory variables task role.
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Linear Regression9 for Local:SASUSER.FITNESS I

Data Data
Model
Statistics
Plats Data source:  Local: SASUSER.FITNESS
Predictions Task filter.  Mone
Titles
Properties
Yariables to assign: Task roles:
Name I | Dependent variable (Limit; 1) ﬂ
@Name @ Ox=ygen_Consumption
£ Gender Expltory variables j

@ RunTime - @ [
.Age @ Age

@ Weight @
@) Oxygen_Consumption EREJ 1 asirnum_Puise

Group analysis by
@ Frequency count [Limit: 1)
Relative weight (Limit: 1)

. Run_Pulse

@ Rest_Pulse

. Maximum_Pulse
(@) Performance
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5. ClickL__Pun__|

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: Oxygen_Consumption

Number of Observations Read . N
Number of Observations Used | 31

Analysis of Variance

Sum of Mean

Source 'DF | Squares Square F Value Pr>F
Model 4 71145087 177.86272 33.01 <.0001
Error ' 26 140.10368  5.38860
Corrected Total | 30 851.55455

Root MSE ' 2.32134 R-Square | 0.8355

Dependent Mean | 47.37581 Adj R-Sq | 0.8102

Coeff Var - 4.89984

Parameter Estimates
Parameter Standard

Variable DF  Estimate Error tValue Pr> |t|
Intercept 1 97.16952 11.65703  8.34 <.0001
RunTime 1 277576 0.34159 -8.13 <.0001
Age 1 -0.18903 0.09439: -2.00: 0.0557
Run_Pulse 1 -0.34568 011820 -2.92 0.0071
Maximum_Pulse [ 1 0.27188 0.13438  2.02 0.0534

Distribution of Residuals for Oxygen_Consumption Residual by Predicted for Oxygen_Consumption
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The histogram of residuals helps you to find outliers and assess the normality assumption.
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Note — review SASEG 8A (pp. 12 — 16) regarding interpretation of the plots — much of the
information regarding interpretation for a one variable model will be the same for the multiple
variable model.

The plot of the residuals versus the values of the independent variables, Runtime, Age, Run_Pulse,
and Maximum Pulse are produced by SASEG. They show no obvious trends or patterns in the
residuals. Recall that independence of residual errors (no trends) is an assumption for linear regression, as
is constant variance across all levels of all predictor variables (and across all levels of the predicted
values, which is seen below).
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Residual-Fit Spread Plot for Oxygen_Consumption

Fit-Mean Residual

o
& o

00
o0 00
)
5 000000
0000
o

0.0 02 04 0.6 08 1.00.0 02 04 0.6 08 1.0
Proportion Less

The diagnostic plots shown above will be described later in greater detail.

Q-Q Plot of Residuals for Oxygen_Consumption
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The plot of the residuals against the normal quantiles is shown above left (quantile-quantile plot, also
known as the Q-Q Plot). If the residuals are normally distributed, the plot should appear to follow closely

a straight, diagonal line. If the plot deviates substantially from the reference line, then there is evidence
against normality.
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The plot shows little deviation from the expected pattern. Thus, you can conclude that the residuals do not
significantly violate the normality assumption. If the residuals did violate the normality assumption, then
a transformation of the response variable or a different model might be warranted.

More diagnostic plots and plots are included by default, as well as a box and whisker plot for residuals.

6.

Residual

DFBETAS

Residuals for Oxygen_Consumption
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Influence Diagnostics for Oxygen_Consumption
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In order to visually check the assumption of constant variance, you can reopen the last task by

rightclicking it and modifying it.
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=] gqg Chapter 5 Demos
=] EEE FITNESS

(= ©pen 4

*  RunLinear Regressiond
| ) ModifyLinear Regressiond
Select i?‘uput Data

: I: Publish...

Add as Code Template
13 Create Task Template...

4! Create Stored Process

7. With Plots selected at the left, click the radio button next to Custom list of plots.
The box next to Diagnostic plots should already be checked. In addition, check the boxes next to
Residuals by predicted values plot and Residual plots.

Linear Regression9 for Local:SASUSER.FITNESS

Data Plots

Model

Statistics

PIOlS_ ) V' Show plats for regression analysis

Predictions : :
Titles (" 4|l appropriate plots for the current data selection
Properties (% Custom list of plots

Custom plots:

[ Histogram plot of the residuals

[v] Residuals by predicted values plot

[T Studentized residuals by predicted values plot
[ Observed by Predicted values plot

[7] Plot Cook's D statistic

[[] Studentized residuals by leverage plot
[7] MNormal quantile plot of the residuals
[T] Residual-Fit plot

[T] Box plat of the residuals

[v] Diagnostic plots

[T] DFFITS plots

[] DFBETAS plots

Egs catter plat with regression line

™ Select al

8. Click and do not replace the results from the previous run.

The plots produced are displayed below:
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The Residual by Predicted plot shows no pattern of residuals around the residual mean of 0. One of
the assumptions of linear regression is constant variance across all levels of all predictors. This plot,
along with the plots of residuals against predictors, helps you to assess that assumption. In this case,
there is no clear pattern, indicating no strong evidence against the assumption of constant variance.
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Fit Diagnostics for Oxygen_Consumption
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The Fit Diagnostics panel plot displays many of the plots seen in the previous part of the
demonstration, but on a smaller scale.



17

20

Residual by Regressors for Oxygen_Consumption
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The plots of the residuals by each of the predictor variables in the model show no patterns or trends.
Again, this lends support to the validity of the constant variance assumption for this regression model.

Influential Observations (Any Outliers?) — Going Beyond

Influential Observations
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Recall in the previous section that you saw examples of data sets where the simple linear regression
model fits were essentially the same. However, plotting the data revealed that the model fits were
different.

One of the examples showed a highly influential observation like the example above.

Identifying influential observations in multiple linear regression is more complex because you have more
predictors to consider.

The Linear Regression task has
options to calculate statistics to

ISttt ity influential

Diagnostic Statistics observations.

Four statistics that help identify influential Selecting the box for

observations are Residuals on the Predictions

= STUDENT residual pane creates the standardized
m Cook’s D residuals, as well as several
m RSTUDENT residual m DFFITS. others discussed previously.

Selecting the box for
Diagnostic statistics creates
the studentized residuals and
the DFFITS statistic, as well as
several others that are not
discussed, such as the Hat
Diagonal, Covariance Ratio,

21 and the DFBETAS.

For our purposes, to detect outliers we will use the Studentized Residuals, Cook’s D statistic, and the
RSTUDENT residuals. Note that there are others...

Studentized Residuals - One way to check for outliers is to use the studentized residuals. These are
calculated by dividing the residual values by their standard errors. For a model that fits the data well and
has no outliers, most of the studentized residuals should be close to 0. In general, studentized residuals
that have an absolute value less than 2.0 could have easily occurred by chance. Studentized residuals that
are between an absolute value of 2.0 to 3.0 occur infrequently and could be outliers. Studentized residuals
that are larger than an absolute value of 3.0 occur rarely by chance alone and should be investigated.
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Studentized Residual

Studentized residuals (SR) are obtained by dividing
the residuals by their standard errors.

Suggested cutoffs are as follows:

= [SR| > 2 for data sets with a relatively small number
of observations

= |SR| > 3 for data sets with a relatively large number of
observations

23

Cook’s D statistic - To detect influential observations, you can also use Cook’s D statistic. This statistic
measures the change in the parameter estimates that results from deleting each observation.

Identify observations above the cutoff and investigate the reasons they occurred.

I 4209 TN
Cook’s D Statistic

Cook’s D statistic is a measure of the simultaneous
change in the parameter estimates when an observation
is deleted from the analysis.

4

A suggested cutoff is D;0O-, where n is the sample
size. n

If the above condition is true, then the observation might
have an adverse effect on the analysis.

22

RSTUDENT Residuals - Recall that studentized residuals are the ordinary residuals divided by their
standard errors. The RSTUDENT residuals are similar to the studentized residuals except that they are
calculated after deleting the i observation. In other words, the RSTUDENT residual is the difference
between the observed Y and the predicted value of Y excluding this observation from the regression.
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If the RSTUDENT residual is different from the studentized residual for a specific observation, that
observation is likely to be influential. A suggested cutoff for |RSTUDENT]| residuals is greater than 3.

RSTUDENT
Y
Fa
Standardized
Standardized residual
residual with

* deleted

27

O ; An Exercise - Looking for Influential Observations
W)

model.

Generate the RStudent and Cook’s D influence statistics and plots for the prediction

Save the statistics to an output data set and create a data set with only observations that exceed the
suggested cutoffs of the influence statistics.

Refer to the last task (linear model where you used the FITNESS data set, the regression model of
Oxygen_Consumption against the predictor variables of RunTime, Age, Run_Pulse and
Maximum Pulse).

1. Modify the last task by right-clicking the Project and selecting Modify....

2. With Plots selected at the left, check the boxes shown checked below in the Custom plots area.

e RSTUDENT residuals are referred to as Studentized residuals in the task windows.
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Madel
Statistics
Flots Show plots for regression analysis
Predictions
appropriate plots for the cu as ion

Thles O Al iate plots for the cument data selecti
Properties (®) Custom list of plots

Custom plats:

[] Histogram plot of the residuals ~

[] Residuals by predicted values plot
Studertized residuals by predicted values plaot
[] Observed by Predicted values plot
Plot Cook's D statistic

[] Studentized residuals by leverage plot
[[] Mormal quantile plot of the residuals
[] Residual-Fit plot

[] Box plot of the residuals

[ ] Diagnostic plots

DFFITS plots

DFBETAS plaots

[] Residual plots

[ ] Select all

3. With Predictions selected at the left:

a. Check the box for Original sample under Data to predict.

b. Check Predictions and Diagnostic statistics under Save output data.

c. Check the box for Residuals under Additional statistics.

d You can change the name and library of the data set where the diagnostic statistic
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variables will be stored by clicking|__B/®%s8-. |in the Save output data area.
Linear Regression911 for Local:SASUSER.FITNESS
Data Predictions
Model
Statistics
Plots — Data to predict —Save output data
l;‘irtel::siclions [V Original sample IV |Fredicton:
Properties I™ Additional data [V Diagnostic statistics
| |Local SASUSER.PREDLINR  Browse... |
—Additional statistics ~Iv Display output and plots
[¥ Residuals -
f& R F ™ Show predictions
Prediction limits

Click and do not replace the results from the previous run.

Linear Regression911 ~

&3 InputData| =] Code| [Z] Log &3 OutputData |‘j’;_‘] Results |
€5 3] Modify Task | & Filter and Sort £ Query Builder | Data ~ Describe v Graph v Analyze ~ | Export » SendTo v | [4]
i) Oxygen_Consumption 2 un_Pulse 12 est_Pulse |12 _| 123 F 2 p |_Oxygen_| iz) stdp_Oxygen_Consumption|
(1] Ci C Run_Pul R Pul M axil Pulse|@) Perf dicted_0 Ci hon | dp_D C i
1 59.57 166 40 172 90 55.9332897 0.91043968
2 E0.06 170 43 186 94 57.8362043 1.6123022
4 3 54.3 156 45 168 83 56.7811803 1.07752127

Along with the other output from the task, a tab for the Output Data table appears. Select that tab to
see the data set created with all variables from the Fitness data set, along with several new
variables containing values for the diagnostic statistics and residuals, along with relevant standard
errors.

Return to the Results tab.
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Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: Oxygen_Consumption

Number of Observations Read | 31
Number of Observations Used |31

Analysis of Variance

Sum of Mean

Source DF | Squares  Square F Value Pr>F
Model 4 711.45087 17786272  33.01 <.0001
Error | 26 140.10368  5.38860
Corrected Total = 30 85155455 '

Root MSE 2.32134 R-Square | 0.8355

Dependent Mean | 47.37581 Adj R-Sq | 0.8102

Coeff Var 4.89984

_ VPa'rameter Estimates _
Parameter Standard

Variable DF  Estimate Error| t Value Pr> |t
Intercept | 1 9716952 11.65703  8.34 <.0001
RunTime 1 277576 0.34159 -8.13 <.0001
Age "1 -0.18903 0.09439 -2.00 0.0557
Run_Pulse .1 -0.34568 0.11820 -2.92 0.0071
Maximum_Pulse 1 027188 0.13438  2.02 0.0534



24

RStudent by Predicted for Oxygen_Consumption
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The RStudent by Predicted plot shows only two values outside the range of [-2,2] and no values outside
the range of [-3,3]. These values are not different from what one would normally expect by chance from a

normally distributed population.



Cook's D for Oxygen_Consumption
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A horizontal reference line is drawn at the critical value of Cook’s D. Only one observation’s Cook’s D
value exceeded that cutpoint and merits further investigation.

5. Right-click the previous task and select Add as a Code Template.

qug Chapter 5 Demos
= FITNESS

| Linear Regressiond
: |# Linear Regressiond1

2 v b

Open

Run Linear Regression911
Modify Linear Regression911
Select Input Data

Publish. ..

Add as Code[*gemplate

5
Create Task Template...

Create Stored Process

[=l-8eg Chapter 5 Demos
=57 FITNESS
- |# Linear Regressiond
|# Linear Regressiond1
. i|# Linear Regressiond11
=[] Programs
‘ {51 Code For Linear Regression311

6. Double-click the node for the code in order to edit it and find the PROC REG section of the code.
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TITLE;
TITLE1l "Linear Regression Results";
FOOTNOTE;
FOOTNOTE1l "Generated by the SAS System (& SASSERVERNAME, &SYSSCPL) on
$TRIM(%$QSYSFUNC (DATE () , NLDATE20.)) at $TRIM(%SYSFUNC (TIME(),
NLTIMAP20.))";
PROC REG DATA=WORK.SORTTempTableSorted
PLOTS (ONLY) =RSTUDENTBYPREDICTED
PLOTS (ONLY) =COOKSD
PLOTS (ONLY) =DFFITS
PLOTS (ONLY) =DFBETAS
Linear Regression Model: MODEL Oxygen Consumption = RunTime Age
Run Pulse Maximum Pulse
/ SELECTION=NONE

OUTPUT OUT=SASUSER.PREDLINREGPREDICTIONSFITNES 0001 (LABEL="Linear

regression predictions and statistics for SASUSER.FITNESS")
PREDICTED=predicted Oxygen Consumption
RESIDUAL=residual Oxygen Consumption

STUDENT=student Oxygen CoHsumptiSh
RSTUDENEérstudgnt_pxygen_ponsumption
COOKD=cookd Oxygen Consumption
DFFITS=dffits Oxygen Consumption
H=h Oxygen Consumption
STDI=stdi_ Oxygen Consumption
STDP=stdp Oxygen Consumption
STDR=stdr Oxygen Consumption ;

RUN;

QUIT,;

7. Make the following changes:
a. Add the option (LABEL) at the end of each PLOTS(ONLY) line.

PROC REG DATA=WORK.SORTTempTableSorted
PLOTS (ONLY) =RSTUDENTBYPREDICTED (LABEL)
PLOTS (ONLY) =COOKSD (LABEL)
PLOTS (ONLY) =DFFITS (LABEL)
PLOTS (ONLY) =DFBETAS (LABEL)

b. Add the statement ID NAME; immediately above the OUTPUT statement.

ID NAME;
OUTPUT
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OUT=SASUSER.PREDLINREGPREDICTIONSFITNES 0001 (LABEL="Linear regression
predictions and statistics for SASUSER.FITNESS")

8. Click L2 | ahove the code window.
RStudent by Predicted for Oxygen_Consumption
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The RStudent plot shows two observations beyond 2 standard errors from the mean of 0. Those are
identified as Sammy and Jack. Because you expect 5% of values to be beyond 2 standard errors from the
mean (remember that these RStudent residuals are assumed to be normally distributed), the fact that you
have 2 that far out gives no cause for concern (5% of 31 is 1.55 expected observations). William and
Gracie have the most extreme “leverage” values, which mean that they are most extreme in the predictor

variable space.



28

Cook's D for Oxygen_Consumption
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Observation

The Cook’s D plot shows Gracie to be an influential point.
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How to Handle Influential Observations
1. Recheck the data to ensure that there are no data
errors.
2. If the data is valid, one possible explanation is that the
model is not adequate.

= A model with higher-order terms, such as
polynomials and interactions between the
variables, might be necessary to fit the
data well.

31

If the unusual data are erroneous, correct the errors and reanalyze the data.

Another possibility is that the observation, although valid, could be unusual. If you had a larger
sample size, there might be more observations like the unusual ones.

You might have to collect more data to confirm the relationship suggested by the influential observation.

In general, we try not to exclude data. In many circumstances, some of the unusual observations contain
important information. However, if you do choose to exclude some observations, include a description of
the types of observations you exclude and provide an explanation. Also discuss the limitation of your
conclusions, given the exclusions, as part of your report or presentation.

Collinearity
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T O .
Graphical Example of Collinearity

Oxygen_Consumgtion Oxygen_Consumption

Wi e e e

.........

i

39

In the Fitness data set example, RunTime and Oxygen Consumption have a strong linear
relationship. Performance and Oxygen_Consumption also have a strong linear relationship. In
addition, RunTime and Performance are linearly related to a large degree.

Graphical Example of Collinearity

40

The goal of multiple linear regression with two predictor variables is to find a best fit plane through the
data to predict Oxygen Consumption. This perspective shows a very strong relationship between the
predictor variables RunTime and Performance. You can imagine that the prediction plane you are
trying to build is like a tabletop, where the observations guide the angle of the tabletop, relative to the
floor, like legs for the table. If the legs line up with one another, then the plane built atop will tend to be
unstable.
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lllustration of Collinearity

41

Here is another way of looking at the three dimensions of two predictor variables and a response variable.
Where should the prediction plane be placed? The slopes of the prediction plane relative to each X and
the Y are the parameter coefficient estimates.

Xiand Xz almost follow a straight line X1 = Xz in the (X1, X2) plane.
Why is this a problem? Two reasons exist.

1. Neither might appear to be significant when both are in the model; however, either might be
significant when only one is in the model. Thus, collinearity can hide significant effects. (The reverse
can be true as well: collinearity can increase the apparent significance of effects.)

2. Collinearity also increases the variance of the parameter estimates and consequently increases
prediction error.



32

lllustration of Collinearity

42

This is a representation of a best-fit plane through the data.

lllustration of Collinearity

43

However, the removal of just one data point (or even just moving the data point) results in a very different
prediction plane (as represented by the lighter plane). This illustrates variability of the parameter
estimates when there is extreme collinearity.

When collinearity is a problem, the estimates of the coefficients are unstable. This means that they have a
large variance. Consequently, the true relationship between Y and the Xs might be quite different from
that suggested by the magnitude and sign of the coefficients.

Collinearity is not a violation of the assumptions of linear regression.
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Example of Collinearity

- ' Generate a regression with Oxygen Consumption as the dependent variable and
Performance, Runtime, Age, Weight, Run_Pulse, Rest_Pulse, and Maximum Pulse as
the independent variables. Compare this model with the Mallows prediction model from the previous

section.
1. With the Fitness data set active, select Tasks = Regression = Linear Regression....

2. Drag Oxygen Consumption to the dependent variable role and all other numeric variables to the
explanatory variables role.

Data
Data source: Local:SASUSER.FITNESS
Task filter: None
Variables to assign: Task roles:
Name | | Dependent variable [Limit: 1)
£ Name ) Duygen_Consumption
/A Gender \.»;x.i Explanatory var'[;}lsjles
. RunTime O RunTime
© toe O
@ weight @ bl
@) Dxygen_Consumption . 8 Flunt FL:;"
@ Run_Pulse Cp @ I'--I1H° e
@ Rest_Pulse Q
. Maximum_Pulse \;I g) Group analys1s by
.Performance lj{” Frequency count [Limit; 1)
| Relative weight (Limit: 1)

3. With Plots selected at the left, uncheck the box for Show plots for regression analysis.

Linear Regression10 for Local:SASUSER.FITNESS

Data Plots
Madel
Statistics
PIOts_ , [ Show plots for regression analysis
Predictions
Tilles (¢ Al appropriate plots for the curent data selection
Properties € Custom list of plots
Custom plots:

4. Click .
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Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: Oxygen_Consumption

Number of Observations Read 31
Number of Observations Used 31

Analysis of Variance

Sum of Mean

Source DF  Squares Square F Value Pr>F
Model 7 72266124 10323732 18.42 <.0001
Error 23 128.89331 5.60406
Corrected Total 30 851.55455

Root MSE 2.36729 R-Square | 0.8486

Dependent Mean | 47.37581 Adj R-Sq | 0.8026

Coeff Var 499683 '

Parameter Estimates

Parameter| Standard
. Estimate Error tValue Pr> |t|
131.78249 72.20754 1.83 0.0810
RunTime -3.86019) 293659 -1.31 0.2016
Age -0.46082) 058660 -0.79 0.4401

Variable DF
1
1
1
Weight | 1 -0.05812| 0.06892 -0.84 04078
1
1
1
1

Intercept

Run_Pulse -0.36207 0.12324 -2.94 0.0074
Rest_Pulse -0.01512  0.06817 -0.22 0.8264
Maximum_Pulse 0.30102  0.13981 2.15 0.0420
Performance -0.12619  0.30097 -0.42 0.6789

For the full model, Model F is highly significant and the R? is large. These statistics suggest that the
model fits the data well.

- However, when you examine the p-values of the parameters, only Run_Pulse and
Maximum Pulse are statistically significant.

- Recall that the 4-variable prediction model included Runtime; however, in the full model, this
same variable is not statistically significant (p-value=0.2016). The p-value for Age changed from
0.0557 to 0.4401 between the 4-variable model and the full model.

When you have a highly significant Model F but no (or few) highly significant terms, collinearity is a
likely problem.
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Collinearity Diagnostics

The Regression task offers these tools that help quantify
the magnitude of the collinearity problems and identify
the subset of Xs that is collinear:

= Variance Inflation Factor (VIF)
Collinearity Analysis

Collinearity Analysis without the Intercept
Tolerance

# VIF is the inverse of Tolerance

48

Selected task options:

VIF provides a measure of the magnitude of the collinearity (Variance
Inflation Factor).

Collinearity Analysis includes the intercept vector when analyzing the X'X matrix for
collinearity.

Collinearity (No Intercept) excludes the intercept vector.

The two Collinearity Analysis options also provide a measure of the magnitude of the problem as well as

give information that can be used to identify the sets of Xs that are the source of the problem. They are

not described in this course.

Variance Inflation Factor (VIF)

The VIF is a relative measure of the increase in the
variance because of collinearity. It can be thought of as
the ratio:

1
VIF = & &@—— 1
-Ri

A VIF;i> 10 indicates that collinearity is a problem.

49
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You can calculate a VIF for each term in the model.

Marquardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the
model.

VIFi = 1/(1 O R?), where Ris the R? of X;, regressed on all the other Xs in the model.

For example, if the model is Y = X1 X2 X3 X4, i=1to 4.

To calculate the R? for X3, fit the model X3 = X1 X2 X4. Take the R? from the model with X3 as the
dependent variable and replace it in the formula VIF; = 1/(1 O Rs?). If VIFsis greater than 10, X3 is
possibly involved in collinearity.

~ Collinearity Diagnostics
O)
Invoke the Linear Regression task and use the VIF option to assess the magnitude of

the
collinearity problem and identify the terms involved in the problem.

1. Reopen the previous task by right-clicking it and selecting Modify....

2.  With Statistics checked at the left, check the box next to Variance inflation values in the
Diagnostics area.




Linear Regression10 for Local:SASUSER.FITNESS

Data

Statistics
Model
Statistics : } : -
Plots ~Details on estimates —Diagnostics
Predictions [~ Standardized regression coefficients ™ Collinearity analysis
Titles ™ Sum of squares, Type 1 ™ Callinearity analysis without the intercept
Propetties [ Sum of squares, Type 2 ™ Tolerance values for estimates
™ Comelation matrix of estimates ¥ Variance inflation values
™ Covariance matrix of estimates Heteroscedasticity test
[ Confidence limits for parameter estimates [~ Asymptotic covariance matrix
[ Durbin‘/atson statistic
Confidence level;

—LCorrelations
[~ Partial comelations
[ Semi-partial correlations

3. Click and do replace the results from the previous run.
]

9 Do you want to replace the results from the previous run?
&/

Choosing "Mo" will save the changes to a new task, named "Linear Regression101",

Mo Cancel

Partial Output

Parameter Estimates

Parameter Standard Variance
Variable D Estimate Error| t Value Pr> |t| Inflation
Intercept 131.78249 72.20754  1.83 0.0810 0
RunTime -3.86019 293659 -1.31 0.2016/ 88.86251
Age -0.46082 058660 -0.79 04401 51.01176

Run_Pulse -0.36207 012324 -2.94 0.0074 854498
Rest Pulse -0.01512) 0.06817 -0.22 0.8264  1.44425
Maximum_Pulse 0.30102  0.13981 215 0.04200 8.78755
Performance -0.12619 030097 -042 06789 16285399

The only change in the output from the previous run of the task is the final column of the Parameter
Estimates table. There is now a listing of Variance Inflation values for each predictor variable.

F
1
1
1
Weight 1 -0.05812 0.06892 -0.84 04078  1.76383
1
1
1
1

Marqguardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the
model.

Some of the VIFs are much larger than 10. A severe collinearity problem is present. At this point there are
many ways to proceed. However, it is always a good idea to use some subject-matter expertise. For
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instance, a quick conversation with the analyst and a view of the data coding scheme turned up this bit of
information.

We just happen to know - The variable Performance was not a measured variable. The
researchers, on the basis of prior literature, created a summary variable, which is a weighted
function of the three variables, RunTime, Age, and Gender. This is not at all an uncommon
occurrence and illustrates an important point. If a summary variable is included in a model along

with some or all of its composite measures, there is bound to be collinearity. In fact, this can be
the source of great problems.

- If the composite variable has meaning, it can be used as a stand-in measure for all three composite
scores and you can remove the variables RunTime and Age from the analysis.

A decision was made to remove Performance from the analysis. Another check of collinearity is
warranted.
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4. Reopen the previous task.

5. Remove Performance from the list of explanatory variables by highlighting it and clicking .

Data

Data source: Local SASUUSER.FITNESS
Task filter: MNone

Variables to assign:

Task roles:

@ Oxpgen_Consumption
@ Run_Pulse

@ Rest_Pulse

@) Maximum_Pulse

(@ Performance

Name | \@ Dependent variable (Limit: 1)
£ Name {20 Dxygen_Consumption
£ Gender \'!QJ Explanatory variables

@ RunTime @ RunTime

@ Age @ Age

@ Weight @ Weight

~{@) Run_Pulse
-_I {2 Rest_Pulse
: {2 Magimum_Pulse
@ Group analysis by
@ L; Frequency count [Limit: 1)
\7@] Relative weight [Limit: 1)

6. Click and do not replace the results from the previous run.

SAS Enterprise Guide

Yes

C:) Do you want to replace the results from the previous run?

Cancel

N%I

X]

Choosing "Mo" will save the changes to a new task, named "Linear Regression101",
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Number of Observations Read | 31
Number of Observations Used |31

Analysis of Variance

Sum of Mean
Source DF | Squares Square F Valuel Pr>F
Model 6 721.67605 120.27934 22.23 <.0001
Error ' 24 129.87851 5.41160
Corrected Total | 30 851.55455
Root MSE 232629 R-Square | 0.8475
Dependent Mean | 47.37581 Adj R-Sq | 0.8094
Coeff Var 491028
~ Parameter Estimates _ ‘
Parameter Standard Variance
Variable DF  Estimate Error| t Value Pr> |t| Inflation
Intercept 1 101.96313 12.27174 8.31 <.0001 0
RunTime 1  -263994 038532 -6.85 <.0001 1.58432
Age 1 -0.21848 0.09850 -2.22 0.0363 1.48953
Weight 1 -0.07503 0.05492 -1.37 0.1845 1.15973
Run_Puise 1 -0.36721 0.12050 -3.05 0.0055 8.46034
Rest Pulse 1  -0.01952' 0.06619 -0.29 0.7706 1.41004
Maximum_Pulse 1 0.30457 013714 222 0.0360 8.75535

The greatest VIF values are much smaller now. The variables Maximum Pulse and Run_Pulse are
also collinear, but for a natural reason. The pulse at the end of a run is highly likely to correlate with the
maximum pulse during the run. One might be tempted simply to remove one variable from the model, but
the small p-values for each indicate that this would adversely affect the model.
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7. Reopen the previous task.

8. Remove Maximum_Pulse from the list of explanatory variables by highlighting it and clicking .

Data

T ask filter: MNone

Data source:  Local:SASUSER.FITNESS

Variables to assign:

Name

@ Name

£ Gender

@ RunTime

@ Age

@ Weight

@ Oxygen_Consumption
@ Run_Pulse

@ Rest_Pulse

@ Maximum_Pulse

(@) Performance

B
B

Task roles:

| Dependent variable (Limit: 1)
~{@) Oxygen_Consumption
[ Explanatory variables
@ RunTime
@ Age
(@) Weight
~{@) Run_Pulse
@) Rest_Pulse
@ Group analysis by
@ Frequency count [Limit: 1)
i Relative weight (Limit: 1)

9. Click and do not replace the results from the previous run.

SAS Enterprise Guide 3

9 ) Do you want to replace the results from the previous run?
L]

NL} I Cancel

x|

Choosing "Mo" will save the changes to a new task, named "Linear Regression101",
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Number of Observations Read | 31
Number of Observations Used | 31

Analysis of Variance

Sum of Mean
Source DF  Squares Square| F Value Pr>F
Model 5 69498323 138.99665 22.19 <.0001
Error 25 156.57132 6.26285
Corrected Total 30 851.55455
Root MSE 2.50257 R-Square  0.8161
Dependent Mean | 47.37581 Adj R-Sq | 0.7794
Coeff Var 5.28238
Parameter Estimates
Parameter Standard Variance
Variable 'DF Estimate Error tValue Pr> [t| Inflation
Intercept 1 11546115 1146893 10.07 <.0001 0
RunTime 1 -2.71594 041288 -6.58 <.0001 1.57183
Age 1 -0.27650 010217 -2.71 0.0121) 1.38477
Weight 1 -0.05300 005811 -0.91 0.3704 1.12190
Run_Pulse 1 -0.12213 0.05207 -2.35 0.0272) 1.36493
Rest Pulse | 1 -0.02485 007116 -0.35 0.7298 140819

With Maximum Pulse removed, all of the VIF values are low, but the R-Square and Adj R-Sq values

were reduced and the p-value for Run-Pulse actually increased!

??Even with collinearity still present in the model, it might be advisable to keep the previous model

including Maximum Pulse.??

Collinearity can have a substantial effect on the outcome of a stepwise procedure for model selection.
Because the significance of important variables can be masked by collinearity, the final model might not
include very important variables. This is why it is advisable to deal with collinearity before using any

automated model selection tool.

# Just FYI - there are other approaches to dealing with collinearity. Two techniques are ridge regression
and principle components regression. In addition, re-centering the predictor variables can
sometimes eliminate collinearity problems, especially in a polynomial regression and ANCOVA

models.



43

An Effective Modeling Cycle

(2)

.(1). Candidate
Preliminary Model

Analysis Selection

@)
Collinearity and
Influentiall@bsenvation
DEetection

©)
Assumption
Validation

Yes

®) (9)

Model Predigtion
Revision Testlng
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(1) Preliminary Analysis O This step includes the use of descriptive statistics, graphs, and correlation
analysis.

(2) Candidate Model Selection O This step uses the numerous selection options in the Linear
Regression task to identify one or more candidate models.

(3) Assumption Validation O This step includes the plots of residuals and graphs of the residuals versus
the predicted values. It also includes a test for equal variances.

(4) Collinearity and Influential Observation Detection O The former includes the use of the VIF
statistic, condition indices, and variation proportions; the latter includes the examination of Rstudent
residuals, Cook’s D statistic, and DFFITS statistics.

(5) Model Revision 0O If steps (3) and (4) indicate the need for model revision, generate a new model by
returning to these two steps.

(6) Prediction Testing O If possible, validate the model with data not used to build the model.
Comprehensive Exercise — but, Optional

1. Assessing Collinearity

Using the BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric variables
in the file.

a. Determine whether there is a collinearity problem.

b. If so, decide what you would like to do about that. Will you remove any variables? Why or why
not?
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Solutions to Exercises

1. Examining Residuals

Assess the model obtained from the final forward stepwise selection of predictors for the BodyFat2
data set. Run a regression of PctBodyFat2 on Abdomen, Weight, Wrist, and Forearm.
Create plots of the residuals by the four regressors and by the predicted values and a normal
guantilequantile plot.

Invoke the Linear Regression task to test the regression model of PctBodyFat2 against the
predictor variables of Abdomen, Weight, Wrist, and Forearm.

a. Do the residual plots indicate any problems with the constant variance assumption?

* Create a new process flow and rename it Chapter 5 Exercises.

EJ gqg Chapter 5 Demos
E{} FITNESS
~|# Linear Regressiond
b Linear Regression91
.|# Linear Regressiond11
|# Linear Regression10
-|# Linear Regression101
~ |# Linear Regression1011
- [:j Programs
*; Code For Linear Regression911
gqg Chapter 5 Exercises i

* Open the BodyFat2 data set.
* Select Analyze = Regression = Linear Regression...

Analyz—l| Export ~ SendTo v | /)
ANOYA » | |@  weight |@  Height
I| Regression » “l_zj_ Linear Regression. ..
Multivariate AR Nonlineaf\iegression. 55
Survival Analysis » | l#i  Logistic Regression ...
Capability y | ' Generalized Linear Models. ..
A ST Ll S
el 3 o s e
T R E—]
25 191: 74
Time Series » I 19825 735
B wowisows.  |m  wx s

* Drag PctBodyFat2 to the dependent variable task role and Abdomen, Weight, Wrist,
and Forearm to the explanatory variables task role.



Data

Data source: Local:SASUSER.BODYFAT2
Task filter: None

Variables to assign:

Task roles:

MName l ;I
@ Density

@ Age

@ weight

@ Height

@ Adioposity

@ FatFreewt

@ Neck

{@ Chest

(@) Abdomen

@ Hip

@ Thigh

@ Knee

@ Ankle

@ Biceps

@ Foream

@ whist =

o o

@ Dependent variable [Limit: 1)
@) PctBodyFat2
U Explanatory variables
~{{2) Abdomen
() Weight
) Wiist
: @ Forearm
@ Group analysis by
|| Frequency count (Limit: 1)

@J Relative weight (Limit: 1)

11

N

» With Plots selected at the left, click the radio button next to Custom list of plots.

_45

The box next to Diagnostic plots should already be checked. In addition, check the boxes next
to Residuals by predicted values plot and Residual plots.




Linear Regression9 for Local:SASUSER.FITNESS

Daa Plots

Model

Statistics

Plotg . V' Show plots for regression analysis

Predictions : :
Titles " &l appropriate plots for the current data selection
Properties (¢ Custom list of plots

Custom plots:

[T Histogram plot of the residuals

[v] Residuals by predicted values plot

[ Studentized residuals by predicted values plot
[T] Dbserved by Predicted values plot

[7] Plot Cook's D statistic

[[] Studentized residuals by leverage plot
[] Mormal quantile plot of the residuals
[T] Residual-Fit plat

[7] Box plat of the residuals

[v| Diagnostic plots

[1 DFFITS plots

[] DFBETAS plots

ﬁgScatter plot with regression line

™ Select all

O Click .
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Residual by Predicted for PctBodyFat2
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Residual

Residual

b.

C.

Residual by Regressors for PctBodyFat2
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It does not appear that the data violate the assumption of constant variance.

Avre there any outliers indicated by the evident in any of the residual plots?

There are a few outliers for Wrist and Forearm and one clear outlier in each of Abdomen and
Weight.

Does the quantile-quantile plot indicate any problems with the normality assumption?
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The quantile-quantile plot in the center left panel shows that the normality assumption seems to be

met.

Generating Potential Outliers

Using the BodyFat2 data set, run a regression model of PctBodyFat2 on Abdomen, Weight,

Wrist, and Forearm.

a. Use plots to identify potential influential observations based on the suggested cutoff values.

* Reopen the last task by right-clicking in it in the Project Tree and selecting Modify....

» With Plots selected at the left, check the boxes that are checked below in the Custom plots

area.
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Data Plots

Model

Statistics

Plotg . V' Show plots for regression analysis

Predictions ) .
Titles " &l appropriate plots for the current data selection
Properties {* Custom list of plots

Custom plots:

[] Histogram plot of the residuals

[ Residuals by predicted values plat

[y Studentized residuals by predicted values plot
[T] Observed by Predicted values plot

[w] Plot Cook's D statistic

[] Studentized residuals by leverage plot
[] Mormal quantile plot of the residuals
[T] Residual-Fit plat

[T] Box plat of the residuals

[ Diagnostic plots

[ DFFITS plots

ﬂgesidual plots

[[] Scatter plot with rearession line

™ Select al

« With Predictions selected at the left:
—  Check the box for Original sample under Data to predict.

— Check Predictions and Diagnostic statistics under Save output data.

— Check the box for Residuals under Additional statistics.

* Click and do not replace the results from the previous run.

+ Right-click the saved task icon in the Project Tree and select Add as Code Template.
= 3qg Chapter 5 Exercises
=-fg BODYFAT2
il Linear Regressionll
[L Linear Reqres e
(= ©pen 4

Run Linear Regression111

[+
E!, Modify Linear Rearession111
Ee

=g [ﬁ El @ Select Input Data
Tasks by Category Publish...
[
Data [ ‘ Add as Codrt\a Template JI
1] Create Task&emplate. o

4 Filter and Sort

-, R e—— 2] Create Stored Process. .,
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RStudent

* Edit the code template in the PROC REG section by adding the option (LABEL) at the end of
each PLOTS(ONLY) line and the statement ID CASE; immediately after the next semi-colon.

PROC REG DATA=WORK.SORTTempTableSorted
PLOTS (ONLY) =RSTUDENTBYPREDICTED (LABEL)
PLOTS (ONLY) =COOKSD (LABEL)
PLOTS (ONLY) =DFFITS (LABEL)
PLOTS (ONLY) =DFBETAS (LABEL)
ID CASE;

O click L2 Run

above the code window.

RStudent by Predicted for PctBodyFat2
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There are only a modest number of observations further than 2 standard error units from the
mean of 0.




52

Cook's D

Cook's D for PctBodyFat2
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There are 10 labeled outliers, but observation 39 is clearly the most extreme.



53

DFFITS

Influence Diagnostics for PctBodyFat2
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The same observations are shown to be influential by the DFFITS statistic.
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Influence Diagnostics for PctBodyFat2
Intercept Abdomen
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DFBETAS are particularly high for observation 39 on the parameters for weight and forearm
circumference.

3. Assessing Collinearity

Using the BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric variables
in the file.

a. Determine whether there is a collinearity problem.
* Open the BodyFat2 data set.
* Select Analyze = Regression = Linear Regression....

Analyze_vh Export v SendTo ~ | /]

ANOYA » | |@  weight |3  Height

IL Regression > “[i Linear Regression. ..

Multivariate P | L Nonlineg’r\glegression...

Survival Analysis » |[#i Lodgistic Regression ...

Capability y» | ' Generalized Linear Models. ..

Control Charts 5 ;E e ‘"-1'8‘; T é;;;
liy Pareto Chat. £ - A 1

Timems | —— —
B> Model Scoring. . ® s s
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» Drag PctBodyFat2 to the dependent variable task role and all other continuous variables
shown to the explanatory variables task role.

Data
Data source:  Local:SASUSER.BODYFAT2
Task filter:  None
Yariables to assign; Task roles:
Name E_z‘jj Dependent variable [Limit: 1) > I
(@ Case (@) PctBodyFat2
@ PctBodyFatt @] Explanatory variables o |
@) PctBodyF at? ) [
@) Density -@
@ hoe @;)
@ weight g
@ Height @ i
8 : i @ Abdomen
(@ Adioposity L—}I ol
(@ FatFreswt =Y Thich
@ Neck : el Knee
@ Chest \;I )] Ankle
.Abdomen @ Biceps
@ Hip e Foream
@ Thigh RRE} st
. Knee @ Group analysis by
.Ankle ';_)] Frequency count [Limit: 1)
@ Biceps | Relative weight (Limit: 1)
@ Forearm
@ whist

* With Statistics selected at the left, check the box for VVariance inflation values in the

Diagnostics area.
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Data
Model
Statistics
Plots
Predictions
Titles
Properties

Statistics

Linear Regression12 for Local:SASUSER.BODYFAT2 |

—Details on estimates
[~ Standardized regression coefficients
[~ Sum of squares, Tvpe 1
[ Sum of squares, Type 2
™ Comrelation matrix of estimates
™ Covariance matrix of estimates
[~ Confidence limits for parameter estimates

Confidence level: 95 v

—Diagnostics
" Collinearity analysis
™ Collinearity analysis without the intercept
™ Tolerance values for estimates
ﬁ Variance inflation values

Heteroscedasticity test

[~ Asymptotic covariance matrix
[~ Durbinwatson statistic

—Correlations
[~ Partial corelations
[~ Semi-partial correlations

O Click .
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Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: PctBodyFat2

Number of Observations Read _ 252
Number of Observations Used | 252

Analysis of Variance

Sum of Mean
Source | DF Squares Square F Value Pr>F
Model 13 13159 1012.22506 54.50 <.0001
Error 238 4420.06401 18.57170
Corrected Total @ 251 17579
Root MSE 4.30949 R-Square ' 0.7486
Dependent Mean = 19.15079 Adj R-Sq | 0.7348
Coeff Var | 22.50293 '
Parameter Estimates
Parameter Standard Variance
Variable 'DF Estimate Error t Value Pr > |t| Inflation
Intercept 1 -21.35323 22.18616 -0.96 0.3368 0
Age 1 0.06457 0.03219 2.01 0.0460 2.22447
Weight 1 -0.09638 0.06185 -1.56 0.1205 4465251
Height 1 -0.04394 017870 -0.25 0.8060 2.93911
Neck 1 -0.47547 023557 -2.02 0.0447 443192
Chest 1 -0.01718 010322 -0.17 0.8679 10.23469
Abdomen 1 0.95500, 0.09016 10.59 <.0001 12.77553
Hip 1 -0.18859 0.14479 -1.30 0.1940 14.54193
Thigh 1 0.24835 0.14617 1.70/ 0.0906 7.95866
Knee 1 0.01395 0.24775 0.06 0.9552 482530
Ankle 1 0.17788 0.22262 0.80 04251 1.92410
Biceps 1 0.18230 0.17250 1.06/ 0.2917 3.67091
Forearm 1 0.45574 0.19930 2.29/ 0.0231, 2.19193
Wrist 1 -1.65450 053316 -3.10 0.0021 3.34840

There seems to be high collinearity with Weight and less so with Hip, Abdomen, Chest, and

Thigh.

If so, decide what you would like to do about that. Will you remove any variables? Why or

why not?

The answer is not so easy. True, Weight is collinear with some set of the other variables, but as

you have seen before in your model-building process, Weight actually ends up as a relatively

significant predictor in the “best” models.



