
 

   

SASEG 9B – Regression Assumptions  

  

  

  

  

  

  

  

  

  

  

  

  

  

(Fall 2015)  

  

  

  

  

  

  

Sources (adapted with permission)-  

T. P. Cronan, Jeff Mullins, Ron Freeze, and David E. Douglas Course and Classroom Notes  

Enterprise Systems, Sam M. Walton College of Business, University of Arkansas, Fayetteville  

Microsoft Enterprise Consortium  

IBM Academic Initiative  

SAS® Multivariate Statistics Course Notes & Workshop, 2010    

SAS® Advanced Business Analytics Course Notes & Workshop, 2010  

Microsoft® Notes  

Teradata® University Network  

  

Copyright © 2013 ISYS 5503 Decision Support and Analytics, Information Systems; Timothy Paul 

Cronan.  For educational uses only - adapted from sources with permission.  No part of this publication 

may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, 

mechanical, photocopying, or otherwise, without the prior written permission from the author/presenter.  

  



2    

 

Recall that the model for the linear regression has the form Y= 0 + 1X + . When you perform a 

regression analysis, several assumptions about the error terms must be met to provide valid tests of 

hypothesis and confidence intervals. The assumptions are that the error terms  

• have a mean of 0 at each value of the predictor variable  

• are normally distributed at each value of the predictor variable  have the same 

variance at each value of the predictor variable  are independent.  

  

 

Examining Residuals 
  

  

Assumptions for Regression 

4 

Unknown  
Relationship 

Y =     0 +    1 X 

  

Scatter Plot of Correct Model 

Y = 3.0 + 0.5X 

R 2 = 0.67 
8 
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To illustrate the importance of plotting data, four examples were developed by Anscombe (1973). In each 

example, the scatter plot of the data values is different. However, the regression equation and the R2 

statistic are the same.  

In the first plot, a regression line adequately describes the data.   
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In the second plot, a simple linear regression model is not appropriate because you are fitting a straight 

line through a curvilinear relationship.  

 

In the third plot, there seems to be an outlying data value that is affecting the regression line. This outlier 

is an influential data value in that it is substantially changing the fit of the regression line.  

  

Scatter Plot of Curvilinear Model 

Y = 3.0 + 0.5X 

R 2 = 0.67 
9 

  

Scatter Plot of Outlier Model 

Y = 3.0 + 0.5X 

R 2 = 0.67 
10 
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In the fourth plot, the outlying data point dramatically changes the fit of the regression line. In fact the 

slope would be undefined without the outlier.  

The four plots illustrate that relying on the regression output to describe the relationship between your 

variables can be misleading. The regression equations and the R2 statistics are the same even though the 

relationships between the two variables are different. Always produce a scatter plot before you conduct  

a regression analysis.  

 

To verify the assumptions for regression, you can use the residual values from the regression analysis. 

Residuals are defined as  r Y Yˆ  
 i i i 

  

Scatter Plot of Influential Model 

Y = 3.0 + 0.5X 

R 2 = 0.67 
11 

  

Verifying Assumptions 

12 
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where Y
ˆ
 is the predicted value for the ith value of the dependent variable.  

i 

You can examine two types of plots when verifying assumptions:  

• the residuals versus the predicted values  

• the residuals versus the values of the independent variables   

 

The graphs above are plots of residual values versus predicted values or predictor variable values for four 

models fit to different sets of data. If model assumptions are valid, then the residual values should be 

randomly scattered about a reference line at 0. Any patterns or trends in the residuals might indicate 

problems in the model.  

1. The model form appears to be adequate because the residuals are randomly scattered about a 

reference line at 0 and no patterns appear in the residual values.  

2. The model form is incorrect. The plot indicates that the model should take into account curvature in 

the data. One possible solution is to add a quadratic term as one of the predictor variables.  

3. The variance is not constant. As you move from left to right, the variance increases. One possible 

solution is to transform your dependent variable.  

4. The observations are not independent. For this graph, the residuals tend to be followed by residuals 

with the same sign, which is called autocorrelation. This problem can occur when you have 

observations that have been collected over time. A possible solution is to use the Regression Analysis 

with Autoregressive Errors task.  

  

Examining Residual Plots 

13 
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Besides verifying assumptions, it is also important to check for outliers. Observations that are far away 

from the bulk of your data are outliers. These observations are often data errors or reflect unusual 

circumstances. In either case, it is good statistical practice to detect these outliers and find out why they 

have occurred.   

  

Detecting Outliers 

14 
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Residual Plots  
  

Using the FITNESS data set, invoke the Linear Regression task to test the regression  

model of Oxygen_Consumption against the predictor variables of RunTime, Age, Run_Pulse and 

Maximum_Pulse (the model that was best based on Mallows’ Cp prediction criterion). Produce the 

default graphics.   

1. Create a new project and name it SASEG 9B Demos.  

  

2. Open the FITNESS data set.  

  

 

3. Select Analyze  Regression  Linear Regression….  

 
4. Drag Oxygen_Consumption to the dependent variable task role and RunTime, Age, 

Run_Pulse, and Maximum_Pulse to the explanatory variables task role.  
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5. Click .  

  

  

  

  

  

The histogram of residuals helps you to find outliers and assess the normality assumption.  
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Note – review SASEG 8A (pp. 12 – 16) regarding interpretation of the plots – much of the 

information regarding interpretation for a one variable model will be the same for the multiple 

variable model.  

  

The plot of the residuals versus the values of the independent variables, Runtime, Age, Run_Pulse, 

and Maximum_Pulse are produced by SASEG. They show no obvious trends or patterns in the 

residuals. Recall that independence of residual errors (no trends) is an assumption for linear regression, as 

is constant variance across all levels of all predictor variables (and across all levels of the predicted 

values, which is seen below).  
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The diagnostic plots shown above will be described later in greater detail.  

  

  

The plot of the residuals against the normal quantiles is shown above left (quantile-quantile plot, also 

known as the Q-Q Plot). If the residuals are normally distributed, the plot should appear to follow closely 

a straight, diagonal line. If the plot deviates substantially from the reference line, then there is evidence 

against normality.  
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The plot shows little deviation from the expected pattern. Thus, you can conclude that the residuals do not 

significantly violate the normality assumption. If the residuals did violate the normality assumption, then 

a transformation of the response variable or a different model might be warranted.  

  

  

  

More diagnostic plots and plots are included by default, as well as a box and whisker plot for residuals.  

  

6. In order to visually check the assumption of constant variance, you can reopen the last task by 

rightclicking it and modifying it.  
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7. With Plots selected at the left, click the radio button next to Custom list of plots.   

The box next to Diagnostic plots should already be checked. In addition, check the boxes next to 

Residuals by predicted values plot and Residual plots.  

  

8.  

The plots produced are displayed below:  

  

  

Click    and do not replace the results from the previous run.   



      15  

  

  

The Residual by Predicted plot shows no pattern of residuals around the residual mean of 0. One of 

the assumptions of linear regression is constant variance across all levels of all predictors. This plot, 

along with the plots of residuals against predictors, helps you to assess that assumption. In this case, 

there is no clear pattern, indicating no strong evidence against the assumption of constant variance.  



16    

  

  

The Fit Diagnostics panel plot displays many of the plots seen in the previous part of the 

demonstration, but on a smaller scale.  
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The plots of the residuals by each of the predictor variables in the model show no patterns or trends.  

Again, this lends support to the validity of the constant variance assumption for this regression model.  

Influential Observations (Any Outliers?) – Going Beyond  

   

Influential Observations 

20 
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Recall in the previous section that you saw examples of data sets where the simple linear regression 

model fits were essentially the same. However, plotting the data revealed that the model fits were 

different.  

One of the examples showed a highly influential observation like the example above.  

Identifying influential observations in multiple linear regression is more complex because you have more 

predictors to consider.  

The Linear Regression task has 

options to calculate statistics to 

identify influential 

observations.  

Selecting the box for  

Residuals on the Predictions 

pane creates the standardized 

residuals, as well as several 

others discussed previously. 

Selecting the box for  

Diagnostic statistics creates 

the studentized residuals and 

the DFFITS statistic, as well as 

several others that are not 

discussed, such as the Hat 

Diagonal, Covariance Ratio, 

and the DFBETAS.  

  

For our purposes, to detect outliers we will use the Studentized Residuals, Cook’s D statistic, and the 

RSTUDENT residuals.  Note that there are others…  

  

Studentized Residuals - One way to check for outliers is to use the studentized residuals. These are 

calculated by dividing the residual values by their standard errors. For a model that fits the data well and 

has no outliers, most of the studentized residuals should be close to 0. In general, studentized residuals 

that have an absolute value less than 2.0 could have easily occurred by chance. Studentized residuals that 

are between an absolute value of 2.0 to 3.0 occur infrequently and could be outliers. Studentized residuals 

that are larger than an absolute value of 3.0 occur rarely by chance alone and should be investigated.  

  

 

Diagnostic Statistics 

Four statistics that help identify influential 

observations are 

◼ STUDENT residual 

◼ Cook’s D 

◼ RSTUDENT residual ◼ DFFITS. 

21 
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Studentized Residual 

Studentized residuals (SR) are obtained by dividing 

the residuals by their standard errors. 

Suggested cutoffs are as follows: 

◼ |SR| > 2 for data sets with a relatively small number 

of observations 

◼ |SR| > 3 for data sets with a relatively large number of 

observations 

23 

Cook’s D statistic - To detect influential observations, you can also use Cook’s D statistic. This statistic 

measures the change in the parameter estimates that results from deleting each observation.  

Identify observations above the cutoff and investigate the reasons they occurred.  

  

  

Cook’s D Statistic 

Cook’s D statistic is a measure of the simultaneous 

change in the parameter estimates when an observation 

is deleted from the analysis. 

22 

4 

A suggested cutoff is          Di    , where n is the sample 
size. n 

If the above condition is true, then the observation might 

have an adverse effect on the analysis. 

  

  

RSTUDENT Residuals - Recall that studentized residuals are the ordinary residuals divided by their 

standard errors. The RSTUDENT residuals are similar to the studentized residuals except that they are 

calculated after deleting the ith observation. In other words, the RSTUDENT residual is the difference 

between the observed Y and the predicted value of Y excluding this observation from the regression.  
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If the RSTUDENT residual is different from the studentized residual for a specific observation, that 

observation is likely to be influential. A suggested cutoff for |RSTUDENT| residuals is greater than 3.  

  

 

  

  

An Exercise - Looking for Influential Observations  

  

Generate the RStudent and Cook’s D influence statistics and plots for the prediction  

model.   

Save the statistics to an output data set and create a data set with only observations that exceed the 

suggested cutoffs of the influence statistics.   

Refer to the last task (linear model where you used the FITNESS data set, the regression model of 

Oxygen_Consumption against the predictor variables of RunTime, Age, Run_Pulse and 

Maximum_Pulse).   

  

1. Modify the last task by right-clicking the Project and selecting Modify….  

  

2. With Plots selected at the left, check the boxes shown checked below in the Custom plots area.  

   RSTUDENT residuals are referred to as Studentized residuals in the task windows.  

  

  

RSTUDENT 

27 
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3. With Predictions selected at the left:  

a. Check the box for Original sample under Data to predict.  

b. Check Predictions and Diagnostic statistics under Save output data.  

c. Check the box for Residuals under Additional statistics.  

   You can change the name and library of the data set where the diagnostic statistic  
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4.  

Along with the other output from the task, a tab for the Output Data table appears. Select that tab to 

see the data set created with all variables from the Fitness data set, along with several new 

variables containing values for the diagnostic statistics and residuals, along with relevant standard 

errors.  

Return to the Results tab.  

  

  

  

  

variables will be stored by clicking    in the  Save output data   area.   

  

Click    and do not replace th e results from the previous run.   
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The RStudent by Predicted plot shows only two values outside the range of [-2,2] and no values outside 

the range of [-3,3]. These values are not different from what one would normally expect by chance from a 

normally distributed population.  
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A horizontal reference line is drawn at the critical value of Cook’s D. Only one observation’s Cook’s D 

value exceeded that cutpoint and merits further investigation.  

  

  

5. Right-click the previous task and select Add as a Code Template.  

 
6. Double-click the node for the code in order to edit it and find the PROC REG section of the code.  
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TITLE;  

TITLE1 "Linear Regression Results";  

FOOTNOTE;  

FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) on  

%TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(),  

NLTIMAP20.))";  

PROC REG DATA=WORK.SORTTempTableSorted  

        PLOTS(ONLY)=RSTUDENTBYPREDICTED  

        PLOTS(ONLY)=COOKSD  

        PLOTS(ONLY)=DFFITS  

        PLOTS(ONLY)=DFBETAS  

    ;  

    Linear_Regression_Model: MODEL Oxygen_Consumption = RunTime Age  

Run_Pulse Maximum_Pulse  

        /        SELECTION=NONE  

    ;   
    OUTPUT OUT=SASUSER.PREDLINREGPREDICTIONSFITNES_0001(LABEL="Linear  

regression predictions and statistics for SASUSER.FITNESS")  

        PREDICTED=predicted_Oxygen_Consumption   

        RESIDUAL=residual_Oxygen_Consumption          

STUDENT=student_Oxygen_Consumption   
        RSTUDENT=rstudent_Oxygen_Consumption   

        COOKD=cookd_Oxygen_Consumption   

        DFFITS=dffits_Oxygen_Consumption   

        H=h_Oxygen_Consumption   

        STDI=stdi_Oxygen_Consumption   

        STDP=stdp_Oxygen_Consumption   

        STDR=stdr_Oxygen_Consumption ;  

RUN;  

QUIT;  

  

7. Make the following changes:  

a. Add the option (LABEL) at the end of each PLOTS(ONLY) line.  

  

PROC REG DATA=WORK.SORTTempTableSorted  

        PLOTS(ONLY)=RSTUDENTBYPREDICTED(LABEL)  

        PLOTS(ONLY)=COOKSD(LABEL)  

        PLOTS(ONLY)=DFFITS(LABEL)  

        PLOTS(ONLY)=DFBETAS(LABEL)     

;  

    

b. Add the statement ID NAME; immediately above the OUTPUT statement.  

  

    ID NAME;  

    OUTPUT  
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OUT=SASUSER.PREDLINREGPREDICTIONSFITNES_0001(LABEL="Linear regression 

predictions and statistics for SASUSER.FITNESS")  

  

8. Click  above the code window.  

  

  

The RStudent plot shows two observations beyond 2 standard errors from the mean of 0. Those are 

identified as Sammy and Jack. Because you expect 5% of values to be beyond 2 standard errors from the 

mean (remember that these RStudent residuals are assumed to be normally distributed), the fact that you 

have 2 that far out gives no cause for concern (5% of 31 is 1.55 expected observations). William and 

Gracie have the most extreme “leverage” values, which mean that they are most extreme in the predictor 

variable space.  



28    

  

  

The Cook’s D plot shows Gracie to be an influential point.  
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How to Handle Influential Observations 

1. Recheck the data to ensure that there are no data 
errors. 

2. If the data is valid, one possible explanation is that the 
model is not adequate. 

◼ A model with higher-order terms, such as 

polynomials and interactions between the 

variables, might be necessary to fit the 

data well. 

31 

  

If the unusual data are erroneous, correct the errors and reanalyze the data.  

  

Another possibility is that the observation, although valid, could be unusual. If you had a larger 

sample size, there might be more observations like the unusual ones.  

You might have to collect more data to confirm the relationship suggested by the influential observation.  

  

In general, we try not to exclude data. In many circumstances, some of the unusual observations contain 

important information.  However, if you do choose to exclude some observations, include a description of 

the types of observations you exclude and provide an explanation. Also discuss the limitation of your 

conclusions, given the exclusions, as part of your report or presentation.  

  

Collinearity  
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In the Fitness data set example, RunTime and Oxygen_Consumption have a strong linear 

relationship. Performance and Oxygen_Consumption also have a strong linear relationship. In 

addition, RunTime and Performance are linearly related to a large degree.  

 

The goal of multiple linear regression with two predictor variables is to find a best fit plane through the 

data to predict Oxygen_Consumption. This perspective shows a very strong relationship between the 

predictor variables RunTime and Performance. You can imagine that the prediction plane you are 

trying to build is like a tabletop, where the observations guide the angle of the tabletop, relative to the 

floor, like legs for the table. If the legs line up with one another, then the plane built atop will tend to be 

unstable.  

  

Graphical Example of Collinearity 

39 

  

Graphical Example of Collinearity 

40 
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Here is another way of looking at the three dimensions of two predictor variables and a response variable. 

Where should the prediction plane be placed? The slopes of the prediction plane relative to each X and 

the Y are the parameter coefficient estimates.  

X1 and X2 almost follow a straight line X1 = X2 in the (X1, X2) plane.  

Why is this a problem? Two reasons exist.  

1. Neither might appear to be significant when both are in the model; however, either might be 

significant when only one is in the model. Thus, collinearity can hide significant effects. (The reverse 

can be true as well: collinearity can increase the apparent significance of effects.)  

2. Collinearity also increases the variance of the parameter estimates and consequently increases 

prediction error.  

  

Illustration of Collinearity 

41 
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This is a representation of a best-fit plane through the data.  

 

However, the removal of just one data point (or even just moving the data point) results in a very different 

prediction plane (as represented by the lighter plane). This illustrates variability of the parameter 

estimates when there is extreme collinearity.  

When collinearity is a problem, the estimates of the coefficients are unstable. This means that they have  a 

large variance. Consequently, the true relationship between Y and the Xs might be quite different from 

that suggested by the magnitude and sign of the coefficients.  

Collinearity is not a violation of the assumptions of linear regression.  

  

Illustration of Collinearity 

42 
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Illustration of Collinearity 
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Example of Collinearity  

  

Generate a regression with Oxygen_Consumption as the dependent variable and 

Performance, Runtime, Age, Weight, Run_Pulse, Rest_Pulse, and Maximum_Pulse as 

the independent variables. Compare this model with the Mallows prediction model from the previous 

section.  

1. With the Fitness data set active, select Tasks  Regression  Linear Regression….  

2. Drag Oxygen_Consumption to the dependent variable role and all other numeric variables  to the 

explanatory variables role.  

 

3. With Plots selected at the left, uncheck the box for Show plots for regression analysis.  

4.  

  

  

  

Click  .   
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For the full model, Model F is highly significant and the R2 is large. These statistics suggest that the 

model fits the data well.  

- However, when you examine the p-values of the parameters, only Run_Pulse and 

Maximum_Pulse are statistically significant.  

- Recall that the 4-variable prediction model included Runtime; however, in the full model, this 

same variable is not statistically significant (p-value=0.2016). The p-value for Age changed from 

0.0557 to 0.4401 between the 4-variable model and the full model.   

When you have a highly significant Model F but no (or few) highly significant terms, collinearity is a 

likely problem.  
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Collinearity Diagnostics 

The Regression task offers these tools that help quantify 

the magnitude of the collinearity problems and identify 

the subset of Xs that is collinear:  

◼ Variance Inflation Factor (VIF) 

◼ Collinearity Analysis 

◼ Collinearity Analysis without the Intercept 

◼ Tolerance 

 VIF is the inverse of Tolerance 

48 

Selected task options:  

VIF  provides a measure of the magnitude of the collinearity (Variance  

Inflation Factor).  

Collinearity Analysis  includes the intercept vector when analyzing the X'X matrix for 

collinearity.  

Collinearity (No Intercept)  excludes the intercept vector.  

The two Collinearity Analysis options also provide a measure of the magnitude of the problem as well as 

give information that can be used to identify the sets of Xs that are the source of the problem. They are 

not described in this course.  

 

Variance Inflation Factor (VIF) 

The VIF is a relative measure of the increase in the 

variance because of collinearity. It can be thought of as 

the ratio: 

1 

VIFi = 2 1 
– Ri 

A VIFi > 10 indicates that collinearity is a problem. 

49 
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You can calculate a VIF for each term in the model.  

Marquardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the 

model.  

VIFi = 1/(1  Ri
2), where Ri

2 is the R2 of Xi, regressed on all the other Xs in the model.  

For example, if the model is Y = X1 X2 X3 X4, i = 1 to 4.  

To calculate the R2 for X3, fit the model X3 = X1 X2 X4. Take the R2 from the model with X3 as the 

dependent variable and replace it in the formula VIF3 = 1/(1  R3
2). If VIF3 is greater than 10, X3 is 

possibly involved in collinearity.   

Collinearity Diagnostics  

  

Invoke the Linear Regression task and use the VIF option to assess the magnitude of 

the  

collinearity problem and identify the terms involved in the problem.  

1. Reopen the previous task by right-clicking it and selecting Modify….  

2. With Statistics checked at the left, check the box next to Variance inflation values in the 

Diagnostics area.  
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Partial Output  

  

The only change in the output from the previous run of the task is the final column of the Parameter 

Estimates table. There is now a listing of Variance Inflation values for each predictor variable.  

Marquardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the 

model.  

Some of the VIFs are much larger than 10. A severe collinearity problem is present. At this point there are 

many ways to proceed. However, it is always a good idea to use some subject-matter expertise. For 

  

3.   Click    and do replace the results from the previous run.   
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instance, a quick conversation with the analyst and a view of the data coding scheme turned up this bit of 

information.  

  

We just happen to know - The variable Performance was not a measured variable. The 

researchers, on the basis of prior literature, created a summary variable, which is a weighted 

function of the three variables, RunTime, Age, and Gender. This is not at all an uncommon 

occurrence and illustrates an important point. If a summary variable is included in a model along 

with some or all of its composite measures, there is bound to be collinearity. In fact, this can be 

the source of great problems.  

  

-  If the composite variable has meaning, it can be used as a stand-in measure for all three composite 

scores and you can remove the variables RunTime and Age from the analysis.  

  

A decision was made to remove Performance from the analysis. Another check of collinearity is 

warranted.  
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4.   Reopen the previous task.   

5.   Remove  Perf ormance   from the list of  explanatory variables   by highlighting it and clicking  .   

  

  

6.   Click    and do not replace the results from the previous run.   
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The greatest VIF values are much smaller now. The variables Maximum_Pulse and Run_Pulse are 

also collinear, but for a natural reason. The pulse at the end of a run is highly likely to correlate with the 

maximum pulse during the run. One might be tempted simply to remove one variable from the model, but 

the small p-values for each indicate that this would adversely affect the model.  
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7.   Reopen the previous task.   

8.   Remove  Maximum_Pulse   from the list of  explanatory variables   by highlighting it and clicking  .   

  

9.   Click    and do not replace the results from the previous run.   
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With Maximum_Pulse removed, all of the VIF values are low, but the R-Square and Adj R-Sq values 

were reduced and the p-value for Run-Pulse actually increased!  

??Even with collinearity still present in the model, it might be advisable to keep the previous model 

including Maximum_Pulse.??  

Collinearity can have a substantial effect on the outcome of a stepwise procedure for model selection. 

Because the significance of important variables can be masked by collinearity, the final model might not 

include very important variables. This is why it is advisable to deal with collinearity before using any 

automated model selection tool.  

 Just FYI - there are other approaches to dealing with collinearity. Two techniques are ridge regression 

and principle components regression. In addition, re-centering the predictor variables can 

sometimes eliminate collinearity problems, especially in a polynomial regression and ANCOVA 

models.   
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(1) Preliminary Analysis  This step includes the use of descriptive statistics, graphs, and correlation 

analysis.  

(2) Candidate Model Selection  This step uses the numerous selection options in the Linear 

Regression task to identify one or more candidate models.  

(3) Assumption Validation  This step includes the plots of residuals and graphs of the residuals versus 

the predicted values. It also includes a test for equal variances.  

(4) Collinearity and Influential Observation Detection  The former includes the use of the VIF 

statistic, condition indices, and variation proportions; the latter includes the examination of Rstudent 

residuals, Cook’s D statistic, and DFFITS statistics.  

(5) Model Revision  If steps (3) and (4) indicate the need for model revision, generate a new model by 

returning to these two steps.  

(6) Prediction Testing  If possible, validate the model with data not used to build the model.  

Comprehensive Exercise – but, Optional  

  

1.   Assessing Collinearity  

Using the BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric variables 

in the file.  

a. Determine whether there is a collinearity problem.  

b. If so, decide what you would like to do about that. Will you remove any variables? Why or why 

not?  

  

  

  

An Effective Modeling Cycle 

54 

  (1) 
Preliminary  

Analysis 

(2)   
Candidate 

Model  
Selection 

  (6) 
Prediction 

Testing 

(5)   
Model 

Revision 
No 

Yes 

(4)   
Collinearity and 

Influential Observation  
Detection 

(3)   
Assumption 
Validation 



44    

Solutions to Exercises  

1.   Examining Residuals  

Assess the model obtained from the final forward stepwise selection of predictors for the BodyFat2 

data set. Run a regression of PctBodyFat2 on Abdomen, Weight, Wrist, and Forearm.  

Create plots of the residuals by the four regressors and by the predicted values and a normal 

quantilequantile plot.  

Invoke the Linear Regression task to test the regression model of PctBodyFat2 against the 

predictor variables of Abdomen, Weight, Wrist, and Forearm.   

a. Do the residual plots indicate any problems with the constant variance assumption?  

• Create a new process flow and rename it Chapter 5 Exercises.  

 

• Open the BodyFat2 data set.  

• Select Analyze  Regression  Linear Regression….  

 

• Drag PctBodyFat2 to the dependent variable task role and Abdomen, Weight, Wrist, 

and Forearm to the explanatory variables task role.  
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• With Plots selected at the left, click the radio button next to Custom list of plots.   

The box next to Diagnostic plots should already be checked. In addition, check the boxes next 

to Residuals by predicted values plot and Residual plots.  
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   Click  .   
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It does not appear that the data violate the assumption of constant variance.  

b. Are there any outliers indicated by the evident in any of the residual plots?  

There are a few outliers for Wrist and Forearm and one clear outlier in each of Abdomen and 

Weight.  

c. Does the quantile-quantile plot indicate any problems with the normality assumption?  



      49  

  

The quantile-quantile plot in the center left panel shows that the normality assumption seems to be 

met.  

2.   Generating Potential Outliers  

Using the BodyFat2 data set, run a regression model of PctBodyFat2 on Abdomen, Weight, 

Wrist, and Forearm.  

a.   Use plots to identify potential influential observations based on the suggested cutoff values.  

• Reopen the last task by right-clicking in it in the Project Tree and selecting Modify….  

• With Plots selected at the left, check the boxes that are checked below in the Custom plots 

area.  
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• With Predictions selected at the left:  

– Check the box for Original sample under Data to predict.  

– Check Predictions and Diagnostic statistics under Save output data.  

– Check the box for Residuals under Additional statistics.  

• Click  and do not replace the results from the previous run.  

• Right-click the saved task icon in the Project Tree and select Add as Code Template.  
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• Edit the code template in the PROC REG section by adding the option (LABEL) at the end of 

each PLOTS(ONLY) line and the statement ID CASE; immediately after the next semi-colon.  

  

 

There are only a modest number of observations further than 2 standard error units from the 

mean of 0.  

PROC REG DATA=WORK.SORTTempTableSorted  

        PLOTS(ONLY)=RSTUDENTBYPREDICTED(LABEL)  

        PLOTS(ONLY)=COOKSD(LABEL)  

        PLOTS(ONLY)=DFFITS(LABEL)  

        PLOTS(ONLY)=DFBETAS(LABEL)  

    ;  

    ID CASE;  

Click   above the code window. 
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There are 10 labeled outliers, but observation 39 is clearly the most extreme.  
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The same observations are shown to be influential by the DFFITS statistic.  
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DFBETAS are particularly high for observation 39 on the parameters for weight and forearm 

circumference.  

3.   Assessing Collinearity  

Using the BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric variables 

in the file.  

a. Determine whether there is a collinearity problem.  

• Open the BodyFat2 data set.  

• Select Analyze  Regression  Linear Regression….  
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• Drag PctBodyFat2 to the dependent variable task role and all other continuous variables 

shown to the explanatory variables task role.  

 
• With Statistics selected at the left, check the box for Variance inflation values in the 

Diagnostics area.  
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   Click  .   
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There seems to be high collinearity with Weight and less so with Hip, Abdomen, Chest,  and 

Thigh.  

b. If so, decide what you would like to do about that. Will you remove any variables? Why  or 

why not?  

The answer is not so easy. True, Weight is collinear with some set of the other variables, but  as 

you have seen before in your model-building process, Weight actually ends up as a relatively 

significant predictor in the “best” models.  


