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Model Building and Interpretation 

 

A process for selecting models might be to start with all the variables in the Fitness data set and 

eliminate the least significant terms, based on p-values. 

For a small data set, a final model can be developed in a reasonable amount of time. If you start with a 

large model, however, eliminating one variable at a time can take an extreme amount of time. You would 

have to continue this process until only terms with p-values lower than some threshold value, such as 0.10 

or 0.05, remain. 

 

71

Model Selection
Eliminating one variable at a time manually for

 small data sets is a reasonable approach

 large data sets can take an extreme amount 

of time.

71

72

Model Selection Options
The Linear Regression task supports these model 

selection techniques:

All-possible regressions ranked using

 R-squared, Adjusted R-Squared, or Mallows’ Cp

Stepwise selection methods

 Stepwise, Forward, or Backward

 Full model fitted (no selection) is the default.

72
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All-Possible Regression Techniques have in common that they literally assess each possible subset model 

of a given set of predictor variables in a regression model. The assessment is based on some overall 

model statistic value (such as R-Squared, Adjusted R-Square and Mallows’ CP). For a model with 2 

predictor variables, X1 and X2, in the MODEL statement, there are 4 possible subset models: one 

intercept-only model (which is always a subset model); the X1 model; the X2 model; and the X1 X2 

model. The intercept-only model is typically disregarded. The number of subset models for a set of k 

variables is 2k or 2k-1, ignoring the intercept-only model. 

In the Fitness data set, there are 7 possible independent variables. Therefore, there are 27 – 1 =127 

possible regression models. There are 7 possible one-variable models, 21 possible two-variable models, 

35 possible three-variable models, and so on. 

If there were 20 possible independent variables, there would be over 1,000,000 models. The number of 

calculations needed increases exponentially with the number of variables in the full model, so one must 

be cautious in judging when to use these techniques. 

In a later demonstration, you will see another set of model selection techniques that do not have to 

examine all the models to help you choose a set of candidate “best subset” models. 

73

ALL Possible Regression Models
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Mallows’ Cp (1973) is estimated by 
  
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where 

MSEp is the mean squared error for the model with p parameters. 

MSEfull is the mean squared error for the full model used to estimate the true residual variance. 

n is the number of observations. 

p is the number of parameters, including an intercept parameter, if estimated. 

Bias in this context refers to the model underfitting or overfitting the data. In other words, important 

variables are left out of the model or there are redundant predictor variables in the model. 

The choice of the best model based on Cp is up for some debate, as will be shown in the slide about 

Hocking’s criterion. Many choose the model with the smallest Cp value. However, Mallows 

recommended that the best model will have a Cp value approximating p. The most parsimonious model 

that fits that criterion is generally considered to be a good choice, although subject-matter knowledge 

should also be a guide in the selection from among competing models. A parsimonious model is one with 

as few parameters as possible for a given degree of quality (predictive or explanatory ability). 

74

Mallows’ Cp

 Mallows’ Cp is a simple indicator of model bias. 

Models with a large Cp are biased.

 Look for models with Cp  p, where p equals the 

number of parameters in the model, including the 

intercept.

 Mallows recommends choosing the first (fewest 

variables) model where Cp approaches p.  
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Hocking suggested the use of the Cp statistic, but with alternative criteria, depending on the purpose of the 

analysis. His suggestion of (Cp  2p  pfull + 1) is included in the REG procedure’s calculations of criteria 

reference plots for best models. 

75

Hocking’s Criterion
Hocking (1976) suggests selecting a model based 

on the following:

 Cp  p for prediction

 Cp  2p  pfull + 1 for parameter estimation

75
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Automatic Model Selection 

 

Invoke the Linear Regression task to produce a regression of Oxygen_Consumption on 

all the other variables in the Fitness data set and produce plots with tool (data) tips to aid in 

exploration of the results. 

 Plots with tool tips can only be created in HTML file, so before the task is created, the option to 

create HTML output must be selected in SAS Enterprise Guide. 

1. Click Tools  Options. 

 

2. In the window that opens, select Results General under Results at the left and then uncheck the 

box for SAS Report and check the box for HTML. 

 

3. Click  and then click . 

Now you are ready to run the Linear Regression task. 

4. With the Fitness data set selected, click Tasks  Regression  Linear Regression…. 

5. Drag Oxygen_Consumption to the dependent variable task role and all other numeric variables  

to the explanatory variables task role. 
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6. With Model selected at the left, find the pull-down menu for Model selection method  

and click  to find Mallows’ Cp selection at the bottom. 
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7. Click . 

 

8. Enable the Show custom code insertion points box 

9. Type ODS GRAPHICS / IMAGEMAP=ON; under the ODS GRAPHICS ON; statement in the 

<insert custom code here> area 

 

10. Click  in the Code Preview for Task window. 

11. Click . 
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Partial HTML Output 

 

 

 

There are many models to compare. It would be unwieldy to try to determine the best model by viewing 

the output tables. Therefore, it is advisable to look at the plots. 
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The first plot is a panel plot of several plots assessing each of the 127 possible subset models. Three of 

them will be further described below. 
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The R-Square plot compares all models based on their R2 values. As noted earlier, adding variables to a 

model will always increase R2 and therefore the full model will always be best. Therefore, one can only 

use the R2 value to compare models of equal numbers of parameters. 

 The model with the greatest R2 values are represented by stars within each category of “Number 

of Parameters”. 

 

The Adjusted R-Square does not have the problem that the R-Square has. One can compare models of 

differing sizes. In this case, it is difficult to see which model has the higher Adjusted R-Square, the starred 

model for 6 parameters or 7 parameters. 
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The line Cp = p is plotted to help you identify models that satisfy the criterion Cp  p for prediction. The 

lower line is plotted to help identify which models satisfy Hocking's criterion Cp  2p  pfull + 1 for 

parameter estimation. 

Use the graph and review the output to select a relatively short list of models that satisfy the criterion 

appropriate for your objective. The first model to fall below the line for Mallows' criterion has five 

parameters. The first model to fall below Hocking's criterion has 6 parameters. 

 With tool tips activated using the IMAGEMAP=ON option, scrolling your mouse over an 

observation will cause a data box to hover over your mouse containing data values represented by 

that observation. In this case, the expanded data box shows that the first model that has a Cp 

value below the green threshold (where Cp=p) is: 

 

In this example the number of variables in the full model, pfull, equals 8 (7 variables plus the intercept). 
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The smallest model with an observation below the Mallows line has p = 5 (Number in Model = 4). The 

model with the star at 5 parameters and the model just above it are considered “best”, based on Mallows’ 

original criterion. The starred model has a Cp = 4.004, satisfying Mallows' criterion 

(Oxygen_Consumption = Runtime Age Run_Pulse Maximum_Pulse) and the one above 

has a value of 4.9567 (Oxygen_Consumption = Performance Runtime Run_Pulse 

Maximum_Pulse). The only difference between the two models is that the first includes Age and the 

second includes Performance. By the strictest definition, the second model should be selected, 

because its Cp value is closest to p. 

The smallest model that shows under the Hocking line has p=6. The model with the smaller Cp value will 

be considered the “best” explanatory model. The table shows the first model with p=6 is 

Oxygen_Consumption = Runtime Age Weight Run_Pulse Maximum_Pulse, with a Cp 

value of 4.2598. Two other models that are also below the Hocking line (they are nearly on top of one 

another in the plot) are Oxygen_Consumption = Performance Runtime Weight 

Run_Pulse Maximum_Pulse and Oxygen_Consumption = Performance Runtime Age 

Run_Pulse Maximum_Pulse. 

 

Some models might be essentially equivalent based on their Cp, R
2 or other measures. When, as in this 

case, there are several candidate “best” models, it is up to the investigator to determine which model 

makes most sense based on theory and experience. The choice between these two models is essentially the 

choice between Age and Performance. Because age is much easier to measure than the subjective 

measure of fitness, the first model is selected here. 

A limitation of the evaluation you have done thus far is that you do not know the magnitude and signs of 

the coefficients of the candidate models or their statistical significance. 

77

“Best” Models – Prediction
The two best candidate models based on Mallows’ 

original criterion includes these regressor variables: 

p = 5 Cp = 4.0004

R2=0.8355

Adj. R2=0.8102 

RunTime, Age, Run_Pulse, 

Maximum_Pulse

p = 5 Cp = 4.9567

R2=0.8292 

Adj. R2=0.8029

Performance, RunTime, Run_Pulse, 

Maximum_Pulse

77
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The variables RunTime, Run_Pulse, and Maximum_Pulse once again appear in all candidate 

models. The choice of models here depends on selection of pairs from Performance, Age and 

Weight. Here you again choose a model with objective measures, Age and Weight. That is the top 

model in the list. Your choice might differ. 

78

“Best” Models – Parameter Estimation
The three best candidate models for Analytic purposes, 

according to Hocking, include: 

p = 6 Cp = 4.2598

R2=0.8469

Adj. R2=0.8163 

RunTime, Age, Weight, Run_Pulse, 

Maximum_Pulse

p = 6 Cp = 4.7158

R2=0.8439 

Adj. R2=0.8127

Performance, RunTime, Weight, 

Run_Pulse, Maximum_Pulse

p = 6 Cp = 4.7168

R2=0.8439 

Adj. R2=0.8127

Performance, RunTime, Age, 

Run_Pulse, Maximum_Pulse

78
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Estimating and Testing the Coefficients for the Selected 
Models 

Invoke the Linear Regression task to compare the ANOVA tables and parameter estimates 

for the  

two-candidate models in the Fitness data set. 

First, return reporting in SAS Enterprise Guide to SAS Report from HTML. 

1. Select Tools  Options. 

2. In the window that opens, select Results General under Results at the left and then uncheck the box 

for HTML and check the box for SAS Report. 

 

3. Click  and then click . 
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4. Run the Linear Regression task twice, once using the variables Runtime, Age, Run_Pulse,  

and Maximum_Pulse as the explanatory variables and once using Runtime, Age, Weight, 

Run_Pulse, and Maximum_Pulse as the explanatory variables. 

 

 

5. In each case, with Plots selected at the left, uncheck the box for Show plots for regression analysis. 

 You will learn more about plots in a later chapter. 
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6. With Titles selected at the left, uncheck the box for Use default text and then type Prediction 

Model Regression Results in the text area for the first model and Explanatory Model 

Regression Results in the text area for the second model. 

 

7. Click . 
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Output for the Prediction Model: 

 

 

 

The R2 and adjusted R2 are the same as calculated during the model selection program. If there are 

missing values in the data set, however, this might not be true. 

The model F is large and highly significant. Age and Maximum_Pulse are not significant at the 0.05 

level of significance. However, all terms have p-values below 0.10. 

The adjusted R2 is close to the R2, which suggests that there are not too many variables in the model. 
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Output for the Explanatory Model: 

 

 

The adjusted R2 is slightly larger than in the Prediction model and very close to the R2. 

The model F is large, but smaller than in the Prediction model. However, it is still highly significant. All 

terms included in the model are significant except Weight. Note that the p-values for Age, 

Run_Pulse, and Maximum_Pulse are smaller in this model than they were in the Prediction model. 

Including the additional variable in the model changes the coefficients of the other terms and changes the 

t Values for all. 
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The all-possible regression technique that was discussed can be computer intensive, especially if there are 

a large number of potential independent variables.  

The Linear Regression task also offers the following model selection options: 

Forward selection first selects the best one-variable model. Then it selects the best two variables 

among those that contain the first selected variable. Forward selection continues 

this process, but stops when it reaches the point where no additional variables 

have a p-value below some threshold (by default 0.50).  

Backward elimination starts with the full model. Next, the variable that is least significant, given the 

other variables, is removed from the model. Backward elimination continues this 

process until all of the remaining variables have a p-value below some threshold 

(by default 0.10). 

Stepwise selection works like a combination of the two previous methods. The default p-value 

threshold for entry is 0.15 and the default p-value threshold for removal is also 

0.15.  

83

Stepwise Selection Methods

FORWARD

SELECTION

BACKWARD

ELIMINATION

STEPWISE

SELECTION

83
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Forward selection starts with an empty model. The method computes an F statistic for each predictor 

variable not in the model and examines the largest of these statistics. If it is significant at a specified 

significance level, the corresponding variable is added to the model. After a variable is entered in the 

model, it is never removed from the model. The process is repeated until none of the remaining variables 

meet the specified level for entry. 

 

Backward elimination starts off with the full model. Results of the F test for individual parameter 

estimates are examined, and the least significant variable that falls above the specified significance level 

is removed. After a variable is removed from the model, it remains excluded. The process is repeated until 

no other variable in the model meets the specified significance level for removal.  

90

Forward Selection

90
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2
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4

5

Stop

0

98

Backward Elimination

98

4
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0

1
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Stepwise selection is similar to forward selection in that it starts with an empty model and incrementally 

builds a model one variable at a time. However, the method differs from forward selection in that 

variables already in the model do not necessarily remain. The backward component of the method 

removes variables from the model that do not meet the significance specified selection criterion. The 

stepwise selection process terminates if no further variable can be added to the model or if the variable 

just entered into the model is the only variable removed in the subsequent backward elimination. 

Stepwise selection (forward, backward, and stepwise) has some serious shortcomings and is not the final 

answer. Simulation studies (Derksen and Keselman 1992) evaluating variable selection techniques found 

the following – collinearity (correlation among explanatory variables) and entry of noise variables. 

One recommendation is to use the variable selection methods to create several candidate models, and 

then use subject-matter knowledge to select the variables that result in the best model within the scientific 

or business context of the problem. Therefore, you are simply using these methods as a useful tool in the 

model-building process (Hosmer and Lemeshow 2000). 

106

Stepwise Selection
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Statisticians give warnings and cautions about the over-interpretation of p-values from models chosen 

using any automated variable selection technique. Refitting many submodels in terms of an optimum fit 

to the data distorts the significance levels of conventional statistical tests. However, many researchers and 

users of statistical software neglect to report that the models they selected were chosen using automated 

methods. They report statistical quantities such as standard errors, confidence limits, p-values, and  

R-squared as if the resulting model were entirely pre-specified. These inferences are inaccurate, tending 

to err on the side of overstating the significance of predictors and making predictions with overly 

optimistic confidence. This problem is very evident when there are many iterative stages in model 

building. When there are many variables and you use stepwise selection to find a small subset of 

variables, inferences become less accurate (Chatfield 1995, Raftery 1994, Freedman 1983).  

One solution to this problem is to split your data. One part could be used for finding the regression model 

and the other part could be used for inference. Another solution is to use bootstrapping methods to obtain 

the correct standard errors and p-values. Bootstrapping is a resampling method that tries to approximate 

the distribution of the parameter estimates to estimate the standard error. Unfortunately, bootstrapping is 

not part of the Linear Regression task and the computer programming is beyond the scope of this course. 

107

Criticism of Model Selection
“It is indeed strange that we often admit model uncertainty 

by searching for a best model but then ignore this 

uncertainty by making inferences and predictions as 

if certain that the best fitting model is actually true.” 

Chris Chatfield, 1995. 

107
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Forward – Stepwise Regression 

 

Select a model for predicting Oxygen_Consumption in the Fitness data set by using 

the forward, backward and stepwise methods. 

1. With the Fitness data set selected, click Tasks  Regression  Linear Regression…. 

2. Drag Oxygen_Consumption to the dependent variable task role and all other numeric variables to 

the explanatory variables task role. 
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3. With Model selected at the left, find the pull-down menu for Model selection method and 

click  to find Forward selection at the bottom. 

 

4. With Titles selected at the left, deselect the box for Use default text and then  

type Forward Selection Results in the text area. 

 

5. Click . 
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After the first step, one variable, RunTime, is in the model. If there are any variables that contribute 

significantly (p-value < 0.50, when controlling for RunTime) then the variable with the smallest p-value 

will be added to the model at the next step. 

 

 

 

At step 2, Age is added to the model. The p-value associated with Age is 0.1222, which meets the 

significance level requirement set in the task. 
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Several steps are not displayed. 

 

The model selected at each step is printed and a summary of the sequence of steps is given at the end of 

the output. In the summary, the variables are listed in the order in which they were selected. The partial R2 

shows the increase in the model R2 as each term was added. 

The model selected has the same variables as the model chosen using Mallows’ Cp selection with the 

Hocking criterion. This will not always be the case. 

 

The Adjusted R-Square plot shows the progression of that statistic at each step. The star denotes the best 

model of the 5 tested. This is not necessarily the highest Adjusted R-Square value of all possible subsets, 

but is the best of the five tested in the forward selection model. 
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Backward – Stepwise Regression 

 

 

Next, rerun the task using backward elimination. 

1. Reopen the previous task by right clicking the icon in the Project Tree and selecting  

Modify Linear Regression4 from the drop-down menu. 

 

2. With Model selected, change the model selection method in the drop-down menu to  

Backward elimination. 
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3. Change the title to Backward Elimination Results in the text area. 

4. Click . 

5. Do not replace the results of the previous run. 
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Partial Output 

 

 

 

 

Using the backward elimination option and the default p-value criterion for staying in the model, three 

independent variables were eliminated. By coincidence the final model is the same as the one considered 

best base on Cp, using the Mallows criterion. 
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The Adjusted R-Square for the model at step 2 (before Weight was removed) was greatest of the three 

tested. Note the scale of the Y-axis for Adjusted R-Square. The differences in value among the three 

values is minimal. A [0-1] scale for the access would have shown how small the differences truly are. 
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Stepwise Regression 

 

 

Finally, run the stepwise selection model. 

1. Reopen the previous task by right clicking the icon in the Project Tree and selecting Modify… from 

the drop-down menu. 

2. With Model selected, change the model selection method in the drop-down menu to  

Stepwise selection. 

3. Change the title to Stepwise Selection Results in the text area. 

4. Click . 

5. Do not replace the results of the previous run. 

Partial Output 

 

 

 

Using stepwise selection and the default p-value, the same subset resulted as that using backward 

elimination. However, it is not the same model as that resulting from forward selection. 
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The default entry criterion is p<.50 for the forward selection method and p<.15 for the stepwise selection 

method. After RunTime was entered into the model, Age was entered at step 2 with a p-value of 0.1222. 

If the criterion were set to something less than 0.10, the final model would have been quite different. It 

would have included only one variable, RunTime. This underscores the precariousness of relying on one 

stepwise method for defining a “best” model. 
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The final models obtained using the default selection criteria are displayed. It is important to note that the 

choice of criterion levels can greatly affect the final models that are selected using stepwise methods. 

 

The final models using 0.05 as the forward and backward step criteria resulted in very different models 

than those chosen using the default criteria. 

109

Stepwise Regression Models

109

FORWARD Runtime, Age, Weight, 

Run_Pulse, 

Maximum_Pulse

BACKWARD Runtime, Age, 

Run_Pulse, 

Maximum_Pulse

STEPWISE Runtime, Age, 

Run_Pulse, 

Maximum_Pulse

110

Stepwise Models, Alternative Criteria

110

FORWARD

(slentry=0.05)

Runtime

BACKWARD

(slstay=0.05)

Runtime, Run_Pulse, 

Maximum_Pulse

STEPWISE

(slentry=0.05,

slstay=0.05)

Runtime



36 

  

 

The stepwise regression methods have an advantage when there are a large number of independent 

variables. 

With the all-possible regressions techniques, you can compare essentially equivalent models and use your 

knowledge of the data set and subject area to select a model that is more easily interpreted. 

111

Comparison of Selection Methods
Stepwise regression uses fewer computer 

resources.

All-possible regression generates more candidate 

models that might have nearly 

equal R2 statistics and Cp

statistics.

111
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Comprehensive Exercises – Above & Beyond 

 

1.   Using Automated Model Selection Techniques 

Use the BodyFat2 data set to identify a set of “best” models. 

a.   Use the Cp selection method to identify a set of candidate models that predict PctBodyFat2 as 

a function of the variables Age, Weight, Height, Neck, Chest, Abdomen, Hip, Thigh, 

Knee, Ankle, Biceps, Forearm, and Wrist. 

1)   Which set of variables was included in the best models according to each of the criteria 

published by Mallows and Hocking? 

b.   Use a stepwise regression method to select a candidate model; try forward and stepwise selection, 

and backward elimination. Use a significance level of 0.05 in each case. 

1)   Which variables were included in the final model produced with forward selection? 

2)   Which variables were included in the final model produced with backward elimination? 

3)   Which variables were included in the final model produced with stepwise selection? 

c.   Change the selection criterion for forward selection back to its default of 0.50. 

1)   How many variables would have resulted from a model using forward selection and a 

significance level for entry criterion of 0.50 (the default), instead of 0.05? 
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Solutions 

1.   Performing a Multiple Regression 

a.   Using the BodyFat2 data set, run a regression of PctBodyFat2 on the variables Age, 

Weight, Height, Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, 

Forearm, and Wrist. 

 With the BodyFat2 data set selected, click Tasks  Regression  Linear Regression…. 

 Drag PctBodyFat2 to the dependent variable task role and Age, Weight, Height, 

Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and 

Wrist to the explanatory variables task role. 

 

 With Plots selected at the right, deselect Show plots for regression analysis. 

 

 Change the title, if desired. 
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 Click . 

 

 

 

 

 

1)  Compare the ANOVA table with that from the model with only Abdomen in the previous 

exercise. What is different? 

There are key differences between the ANOVA table for this model and the Simple Linear 

Regression model. 

 The degrees of freedom for the model are much higher, 13 versus 1. 

 The Mean Square Error and the F Value are much smaller. 
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 The R-Square is higher. 

2)  How do the R2 and the adjusted R2 compare with these statistics for the Abdomen regression 

demonstration? 

Both the R2 and adjusted R2 for the full models are larger than the simple linear regression. 

The multiple regression model explains almost 75 percent of the variation in the 

PctBodyFat2 variable versus only about 66 percent explained by the simple linear 

regression model. 

3)  Did the estimate for the intercept change? Did the estimate for the coefficient of Abdomen 

change? 

Yes, including the other variables in the model changed both the estimate of the intercept and 

the slope for Abdomen. Also, the p-values for both changed dramatically. The slope and 

standard error of Abdomen are now greater. 

Variable DF Parameter 
Estimate 

Standard 
Error 

Model1 Abdomen 1 0.63130 0.02855 

Model2 Abdomen 1 0.95500 0.09016 

 

b.   Simplifying the Model  

1)  Rerun the model in a., but eliminate the variable with the highest p-value. Compare the output 

with the Exercise a. model. 

 This next step reruns the regression with Knee removed because it has the largest p-value 

(0.9552). 

 Modify the previous Linear Regression task by right-clicking it and choosing Modify… from 

the drop-down menu. 

 Remove Knee from task roles by selecting it and clicking . 
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 Click . 

 Do not replace the results from the previous run. 

 

 

 

 

 

2)  Did the p-value for the model change? 

No, the p-value for the model did not change out to four decimal places. 

3)  Did the R2 and adjusted R2 change?  

The R2 showed essentially no change. The adjusted R2 increased from .7348 to .7359. When 

an adjusted R2 increases by removing a variable from the models, it strongly implies that the 

removed variable was not necessary. 

4)  Did the parameter estimates and their p-values change? 

The parameter estimates and their p-values changed slightly, none to any large degree. 
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c.   More Simplifying of the Model  

1)  Rerun the model in Exercise b, but drop the variable with the highest p-value. 

This next step reruns the regression, but with Chest removed because it has the largest 

p-value (0.8666). 

 Modify the previous Linear Regression task by right-clicking it and choosing Modify… from 

the drop-down menu. 

 Remove Chest from task roles by selecting it and clicking . 

 

 Click . 

 Do not replace the results from the previous run. 
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2)  How did the output change from the previous model? 

The ANOVA table did not change significantly. The R2 remained essentially unchanged. The 

adjusted R2 increased again, confirming that the variable Chest did not contribute much to 

explaining the variation in PctBodyFat2 when the other variables are in the model. 

3)  Did the number of parameters with p-values less than 0.05 change? 

The p-value for Weight changed more than any other and is now just above 0.05. The 

p-values and parameter estimates for other variables changed much less. There are no more 

variables in this model with p-values below 0.05, compared with the previous one. 

2.   Using Automated Model Selection Techniques 

a.   Use an all-regressions technique to identify a set of candidate models, using the SELECTION=CP 

option, that predict PctBodyFat2 as a function of the variables Age, Weight, Height, 

Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and Wrist.  

 Click Tools  Options. 
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 In the window that opens, select Results General under Results at the left and then uncheck 

the box for SAS Report and check the box for HTML. 

 

 Click  and then click . 

Now you are ready to run the Linear Regression task. 

 With the BodyFat2 data set selected, click Tasks  Regression  Linear Regression…. 
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 Drag PctBodyFat2 to the dependent variable task role and Age, Weight, Height, 

Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and Wrist 

to the explanatory variables task role. 

 

 With Model selected at the left, find the pull-down menu for Model selection 

method and click  to find Mallows’ Cp selection at the bottom. 

 

 Click . 

 

 Check the Show custom code insertion points box 

 Type GRAPHICS / IMAGEMAP=ON; under ODS GRAPHICS ON; statement, in the 

<insert custom code here> area 
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 Click  in the Code Preview for Task window. 

 Click . 

 

The plot indicates that the best model according to Mallows’ criterion is an 8-parameter 

model (a 7-parameter model comes close and would be worth investigating). The best model 

according to Hocking’s criterion has 10 parameters (including the intercept). 

A partial table of the models, their C(p) values and the numbers of variables in the models is 

displayed. 



  47 

 

 

1)  Which set of variables was included in the best models according to each of the criteria 

published by Mallows and Hocking? 

The best Mallows model is number 1 (7 variables in model plus an intercept equals 8 

parameters). This model includes the variables Age, Weight, Neck, Abdomen, Thigh, 

Forearm, and Wrist. 

The best Hocking model is number 4. It includes Hip and Biceps, along with the variables 

in the best Mallows model. 

b.   Use a stepwise regression method to select a candidate model; try forward and stepwise selection, 

and backward elimination. Use a significance level of 0.05 in each case. 

 With the BodyFat2 data set selected, click Tasks  Regression  Linear Regression…. 

 Drag PctBodyFat2 to the dependent variable task role and Age, Weight, Height, 

Neck, Chest, Abdomen, Hip, Thigh, Knee, Ankle, Biceps, Forearm, and 

Wrist to the explanatory variables task role. 
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 With Model selected at the left, find the pull-down menu for Model selection method 

and click  to find Forward selection at the bottom. 

 

 Change the significance level to enter the model to 0.05. 

 

 With Titles selected at the left, uncheck the box for Use default text and then type Forward 

Selection Results with alpha=0.05 in the text area. 

 

 Click . 
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Skip to the last step in the forward selection process: 

 

 

 

 

 

1)  Which variables were included in the final model produced with forward selection? 



50 

  

Abdomen, Weight, Wrist, and Forearm were included in the final model. 

The Summary of Forward Selection shows that Abdomen alone contributed 0.6617 to the 

total R-square for the model. Weight adds 0.0571 to that total and Wrist and Forearm 

add less than 0.01 each. The total R-Square of this model (0.7350) is nearly as great as that 

for the full model (0.7485), which had 13 predictors. 

 

The adjusted R-Square plot shows how the adjusted R-square changes at each step. In this 

case, that value also increases monotonically. 

 Modify the previous model by right-clicking it in the Project Tree and selecting Modify from 

the drop-down menu. 

 With Model selected at the left, change the model selection method to  

Backward elimination and change the significance level to stay in the model to 0.05. 
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 With Titles selected at the left, type Backward Elimination Results with 

alpha=0.05 in the text area. 

 

 Click . 

 Do not replace the results from the previous run. 

Partial Output 

 

Skip to the last step in the backward elimination process: 
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2)  Which variables were included in the final model produced with backward elimination? 

The backward elimination method using alpha=0.05 resulted in the same model as the one 

that resulted from the forward selection method. 

 

The Adjusted R-Square plot shows that, even though the backward elimination process 

continued to step 9, the adjusted R-square actually stopped improving at step 4, when 9 

variables remained in the model. In fact, the adjusted R-square continued to get worse after 

step 4. 
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The reliance on stepwise p-values alone to reach a “best” model has many limitations. It is 

suggested that any model-building process be followed up by model validation on a separate 

set of data. 

 Modify the forward selection model by right-clicking it in the Project Tree and selecting 

Modify from the drop-down menu. 

 With Model selected at the left, change the model selection method to Stepwise selection 

and change both significance levels to 0.05. 

 

 With Titles selected at the left, type Stepwise Selection Results with 

alpha=0.05 in the text area. 

 

 Click . 

 Do not replace the results from the previous run. 

Partial Output 

 

Skip to the last step in the stepwise selection process: 
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3)  Which variables were included in the final model produced with stepwise selection? 

The resulting model is identical to the one obtained using forward selection. This will not 

always be the case. 

c.   Change the selection criterion for forward selection back to its default of 0.50. 

 Modify the forward selection model by right-clicking it in the Project Tree and selecting 

Modify from the drop-down menu. 
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 With Model selected at the left, change the significance level to 0.5. 

 

 With Titles selected at the left, type Forward Selection Results with 

alpha=0.5 in the text area. 

 

 Click . 

 Do not replace the results from the previous run. 

Partial Output 

 

 

 



  57 
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1)  How many variables would have resulted from a model using forward selection and a 

significance level for entry criterion of 0.50 (the default), instead of 0.05? 

The final model contains 10 variables, rather than the 4 that resulted from using a 

significance level for entry value of 0.05. Variables added in the final steps contribute very 

little to the overall R-Square.  
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Adjusted R-square stops improving at step 9. 


