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Model Building and Interpretation 

 

A process for selecting models might be to start with all the variables in the Fitness data set and 

eliminate the least significant terms, based on p-values. 

For a small data set, a final model can be developed in a reasonable amount of time. If you start with a 

large model, however, eliminating one variable at a time can take an extreme amount of time. You would 

have to continue this process until only terms with p-values lower than some threshold value, such as 0.10 

or 0.05, remain. 

 

71

Model Selection
Eliminating one variable at a time manually for

 small data sets is a reasonable approach

 large data sets can take an extreme amount 

of time.

71

72

Model Selection Options
The Linear Regression task supports these model 

selection techniques:

All-possible regressions ranked using

 R-squared, Adjusted R-Squared, or Mallows’ Cp

Stepwise selection methods

 Stepwise, Forward, or Backward

 Full model fitted (no selection) is the default.

72
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All-Possible Regression Techniques have in common that they literally assess each possible subset model 

of a given set of predictor variables in a regression model. The assessment is based on some overall 

model statistic value (such as R-Squared, Adjusted R-Square and Mallows’ CP). For a model with 2 

predictor variables, X1 and X2, in the MODEL statement, there are 4 possible subset models: one 

intercept-only model (which is always a subset model); the X1 model; the X2 model; and the X1 X2 

model. The intercept-only model is typically disregarded. The number of subset models for a set of k 

variables is 2k or 2k-1, ignoring the intercept-only model. 

In the Fitness data set, there are 7 possible independent variables. Therefore, there are 27 – 1 =127 

possible regression models. There are 7 possible one-variable models, 21 possible two-variable models, 

35 possible three-variable models, and so on. 

If there were 20 possible independent variables, there would be over 1,000,000 models. The number of 

calculations needed increases exponentially with the number of variables in the full model, so one must 

be cautious in judging when to use these techniques. 

In a later demonstration, you will see another set of model selection techniques that do not have to 

examine all the models to help you choose a set of candidate “best subset” models. 
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ALL Possible Regression Models
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Mallows’ Cp (1973) is estimated by 
  
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where 

MSEp is the mean squared error for the model with p parameters. 

MSEfull is the mean squared error for the full model used to estimate the true residual variance. 

n is the number of observations. 

p is the number of parameters, including an intercept parameter, if estimated. 

Bias in this context refers to the model underfitting or overfitting the data. In other words, important 

variables are left out of the model or there are redundant predictor variables in the model. 

The choice of the best model based on Cp is up for some debate, as will be shown in the slide about 

Hocking’s criterion. Many choose the model with the smallest Cp value. However, Mallows 

recommended that the best model will have a Cp value approximating p. The most parsimonious model 

that fits that criterion is generally considered to be a good choice, although subject-matter knowledge 

should also be a guide in the selection from among competing models. A parsimonious model is one with 

as few parameters as possible for a given degree of quality (predictive or explanatory ability). 

74

Mallows’ Cp

 Mallows’ Cp is a simple indicator of model bias. 

Models with a large Cp are biased.

 Look for models with Cp  p, where p equals the 

number of parameters in the model, including the 

intercept.

 Mallows recommends choosing the first (fewest 

variables) model where Cp approaches p.  
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Hocking suggested the use of the Cp statistic, but with alternative criteria, depending on the purpose of the 

analysis. His suggestion of (Cp  2p  pfull + 1) is included in the REG procedure’s calculations of criteria 

reference plots for best models. 

75

Hocking’s Criterion
Hocking (1976) suggests selecting a model based 

on the following:

 Cp  p for prediction

 Cp  2p  pfull + 1 for parameter estimation

75
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Automatic Model Selection 

 

Invoke the Linear Regression task to produce a regression of Oxygen_Consumption on 

all the other variables in the Fitness data set and produce plots with tool (data) tips to aid in 

exploration of the results. 

 Plots with tool tips can only be created in HTML file, so before the task is created, the option to 

create HTML output must be selected in SAS Enterprise Guide. 

1. Click Tools  Options. 

 

2. In the window that opens, select Results General under Results at the left and then uncheck the 

box for SAS Report and check the box for HTML. 

 

3. Click  . 

Now you are ready to run the Linear Regression task. 

4. With the Fitness data set selected, click Tasks  Regression  Linear Regression…. 

5. Drag Oxygen_Consumption to the dependent variable task role and all other numeric variables  

to the explanatory variables task role. 
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6. With Model selected at the left, find the pull-down menu for Model selection method  

and click  to find Mallows’ Cp selection at the bottom. 

 

 

Note – under Plots, leave the defaults checked – Show plots for regression analysis > all 

appropriate plots 
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7. Click . 

 

8. Enable the Show custom code insertion points box  

9. Scroll down and under the ODS GRAPHICS ON statement, type ODS GRAPHICS / 

IMAGEMAP=ON; in the <insert custom code here> area 

 

 

10. Click  in the Code Preview for Task window. 

11. Click . 
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Partial HTML Output 

 

 

 

 

 

 

There are many models to compare. It would be unwieldy to try to determine the best model by viewing 

the output tables. Therefore, it is advisable to look at the plots. 
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The first plot is a panel plot of several plots assessing each of the 127 possible subset models. Three of 

them will be further described below. 
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The R-Square plot compares all models based on their R2 values. As noted earlier, adding variables to a 

model will always increase R2 and therefore the full model will always be best. Therefore, one can only 

use the R2 value to compare models of equal numbers of parameters. 

 The model with the greatest R2 values are represented by stars within each category of “Number 

of Parameters”. 

 

The Adjusted R-Square does not have the problem that the R-Square has. One can compare models of 

differing sizes. In this case, it is difficult to see which model has the higher Adjusted R-Square, the starred 

model for 6 parameters or 7 parameters. 
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The line Cp = p is plotted to help you identify models that satisfy the criterion Cp  p for prediction. The 

lower line is plotted to help identify which models satisfy Hocking's criterion Cp  2p  pfull + 1 for 

parameter estimation. 

Use the graph and review the output to select a relatively short list of models that satisfy the criterion 

appropriate for your objective. The first model to fall below the line for Mallows' criterion has five 

parameters. The first model to fall below Hocking's criterion has 6 parameters. 

 With tool tips activated using the IMAGEMAP=ON option, scrolling your mouse over an 

observation will cause a data box to hover over your mouse containing data values represented by 

that observation. In this case, the expanded data box shows that the first model that has a Cp 

value below the green threshold (where Cp=p) is: 

 

In this example the number of variables in the full model, pfull, equals 8 (7 variables plus the intercept). 
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The smallest model with an observation below the Mallows line has p = 5 (Number in Model = 4). The 

model with the star at 5 parameters and the model just above it are considered “best”, based on Mallows’ 

original criterion. The starred model has a Cp = 4.004, satisfying Mallows' criterion 

(Oxygen_Consumption = Runtime Age Run_Pulse Maximum_Pulse) and the one above 

has a value of 4.9567 (Oxygen_Consumption = Performance Runtime Run_Pulse 

Maximum_Pulse). The only difference between the two models is that the first includes Age and the 

second includes Performance. By the strictest definition, the second model should be selected, 

because its Cp value is closest to p. 

The smallest model that shows under the Hocking line has p=6. The model with the smaller Cp value will 

be considered the “best” explanatory model. The table shows the first model with p=6 is 

Oxygen_Consumption = Runtime Age Weight Run_Pulse Maximum_Pulse, with a Cp 

value of 4.2598. Two other models that are also below the Hocking line (they are nearly on top of one 

another in the plot) are Oxygen_Consumption = Performance Runtime Weight 

Run_Pulse Maximum_Pulse and Oxygen_Consumption = Performance Runtime Age 

Run_Pulse Maximum_Pulse. 

 

Some models might be essentially equivalent based on their Cp, R
2 or other measures. When, as in this 

case, there are several candidate “best” models, it is up to the investigator to determine which model 

makes most sense based on theory and experience. The choice between these two models is essentially the 

choice between Age and Performance. Because age is much easier to measure than the subjective 

measure of fitness, the first model is selected here. 

A limitation of the evaluation you have done thus far is that you do not know the magnitude and signs of 

the coefficients of the candidate models or their statistical significance. 

77

“Best” Models – Prediction
The two best candidate models based on Mallows’ 

original criterion includes these regressor variables: 

p = 5 Cp = 4.0004

R2=0.8355

Adj. R2=0.8102 

RunTime, Age, Run_Pulse, 

Maximum_Pulse

p = 5 Cp = 4.9567

R2=0.8292 

Adj. R2=0.8029

Performance, RunTime, Run_Pulse, 

Maximum_Pulse

77
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Using Stepwise Methods 

 

The all-possible regression technique that was discussed can be computer intensive, especially if there are 

a large number of potential independent variables.  

The Linear Regression task also offers the following model selection options: 

Forward selection first selects the best one-variable model. Then it selects the best two variables 

among those that contain the first selected variable. Forward selection continues 

this process, but stops when it reaches the point where no additional variables 

have a p-value below some threshold (by default 0.50).  

Backward elimination starts with the full model. Next, the variable that is least significant, given the 

other variables, is removed from the model. Backward elimination continues this 

process until all of the remaining variables have a p-value below some threshold 

(by default 0.10). 

Stepwise selection works like a combination of the two previous methods. The default p-value 

threshold for entry is 0.15 and the default p-value threshold for removal is also 

0.15.  

83

Stepwise Selection Methods

FORWARD

SELECTION

BACKWARD

ELIMINATION

STEPWISE

SELECTION

83
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Forward selection starts with an empty model. The method computes an F statistic for each predictor 

variable not in the model and examines the largest of these statistics. If it is significant at a specified 

significance level, the corresponding variable is added to the model. After a variable is entered in the 

model, it is never removed from the model. The process is repeated until none of the remaining variables 

meet the specified level for entry. 

 

Backward elimination starts off with the full model. Results of the F test for individual parameter 

estimates are examined, and the least significant variable that falls above the specified significance level 

is removed. After a variable is removed from the model, it remains excluded. The process is repeated until 

no other variable in the model meets the specified significance level for removal.  
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Stepwise selection is similar to forward selection in that it starts with an empty model and incrementally 

builds a model one variable at a time. However, the method differs from forward selection in that 

variables already in the model do not necessarily remain. The backward component of the method 

removes variables from the model that do not meet the significance specified selection criterion. The 

stepwise selection process terminates if no further variable can be added to the model or if the variable 

just entered into the model is the only variable removed in the subsequent backward elimination. 

Stepwise selection (forward, backward, and stepwise) has some serious shortcomings and is not the final 

answer. Simulation studies (Derksen and Keselman 1992) evaluating variable selection techniques found 

the following – collinearity (correlation among explanatory variables) and entry of noise variables. 

One recommendation is to use the variable selection methods to create several candidate models, and 

then use subject-matter knowledge to select the variables that result in the best model within the scientific 

or business context of the problem. Therefore, you are simply using these methods as a useful tool in the 

model-building process (Hosmer and Lemeshow 2000). 
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Stepwise Regression 

 

Select a model for predicting Oxygen_Consumption in the Fitness data set by using 

the forward, backward and stepwise methods. 

Let’s Begin with Forward Selection 

1. With the Fitness data set selected, click Tasks  Regression  Linear Regression…. 

2. Drag Oxygen_Consumption to the dependent variable task role and all other numeric variables to 

the explanatory variables task role. 
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3. With Model selected at the left, find the pull-down menu for Model selection method and 

click  to find Forward selection at the bottom. 

 

4. With Titles selected at the left, deselect the box for Use default text and then  

type Forward Selection Results in the text area. 

 

5. Click . 
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After the first step, one variable, RunTime, is in the model. If there are any variables that contribute 

significantly (p-value < 0.50, when controlling for RunTime) then the variable with the smallest p-value 

will be added to the model at the next step. 

 

 

At step 2, Age is added to the model. The p-value associated with Age is 0.1222, which meets the 
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significance level requirement set in the task. 

Several steps are not displayed. 

 

The model selected at each step is printed and a summary of the sequence of steps is given at the end of 

the output. In the summary, the variables are listed in the order in which they were selected. The partial R2 

shows the increase in the model R2 as each term was added. 

The model selected has the same variables as the model chosen using Mallows’ Cp selection with the 

Hocking criterion. This will not always be the case. 

 

The Adjusted R-Square plot shows the progression of that statistic at each step. The star denotes the best 

model of the 5 tested. This is not necessarily the highest Adjusted R-Square value of all possible subsets, 

but is the best of the five tested in the forward selection model. 
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Backward Elimination 

Next, rerun the task using backward elimination. 

1. Reopen the previous task by right clicking the icon in the Project Tree and selecting  

Modify Linear Regression4 from the drop-down menu. 

 

2. With Model selected, change the model selection method in the drop-down menu to  

Backward elimination. 
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3. Change the title to Backward Elimination Results in the text area. 

4. Click . 

5. Do not replace the results of the previous run. 

 

Partial Output 
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Using the backward elimination option and the default p-value criterion for staying in the model, three 

independent variables were eliminated. By coincidence the final model is the same as the one considered 

best base on Cp, using the Mallows criterion. 

 

The Adjusted R-Square for the model at step 2 (before Weight was removed) was greatest of the three 

tested. Note the scale of the Y-axis for Adjusted R-Square. The differences in value among the three 

values is minimal. A [0-1] scale for the access would have shown how small the differences truly are. 
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Finally, run the Stepwise selection model. 

1. Reopen the previous task by right clicking the icon in the Project Tree and selecting Modify… from 

the drop-down menu. 

2. With Model selected, change the model selection method in the drop-down menu to  

Stepwise selection. 

3. Change the title to Stepwise Selection Results in the text area. 

4. Click . 

5. Do not replace the results of the previous run. 

Partial Output 

 

 

 

 

Using stepwise selection and the default p-value, the same subset resulted as that using backward 

elimination. However, it is not the same model as that resulting from forward selection. 
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The default entry criterion is p<.50 for the forward selection method and p<.15 for the stepwise selection 

method. After RunTime was entered into the model, Age was entered at step 2 with a p-value of 0.1222. 

If the criterion were set to something less than 0.10, the final model would have been quite different. It 

would have included only one variable, RunTime. This underscores the precariousness of relying on one 

stepwise method for defining a “best” model. 
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Comparing Forward, Backward, & Stepwise Results 

 

The final models obtained using the default selection criteria are displayed. It is important to note that the 

choice of criterion levels can greatly affect the final models that are selected using stepwise methods. 

 

The final models using 0.05 as the forward and backward step criteria resulted in very different models 

than those chosen using the default criteria. 

109

Stepwise Regression Models

109

FORWARD Runtime, Age, Weight, 

Run_Pulse, 

Maximum_Pulse

BACKWARD Runtime, Age, 

Run_Pulse, 

Maximum_Pulse

STEPWISE Runtime, Age, 

Run_Pulse, 

Maximum_Pulse

110

Stepwise Models, Alternative Criteria

110

FORWARD

(slentry=0.05)

Runtime

BACKWARD

(slstay=0.05)

Runtime, Run_Pulse, 

Maximum_Pulse

STEPWISE

(slentry=0.05,

slstay=0.05)

Runtime
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The stepwise regression methods have an advantage when there are a large number of independent 

variables. 

With the all-possible regressions techniques, you can compare essentially equivalent models and use your 

knowledge of the data set and subject area to select a model that is more easily interpreted. 

111

Comparison of Selection Methods
Stepwise regression uses fewer computer 

resources.

All-possible regression generates more candidate 

models that might have nearly 

equal R2 statistics and Cp

statistics.
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