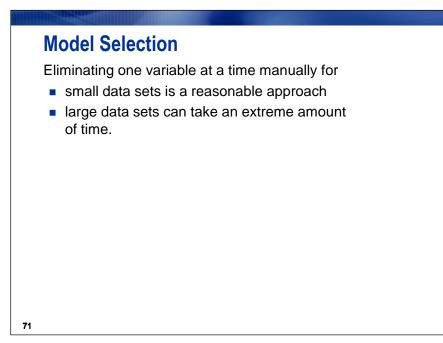
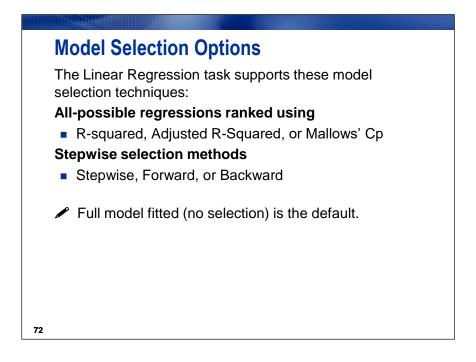
# SASEG 9\* – Model Building; An Introduction

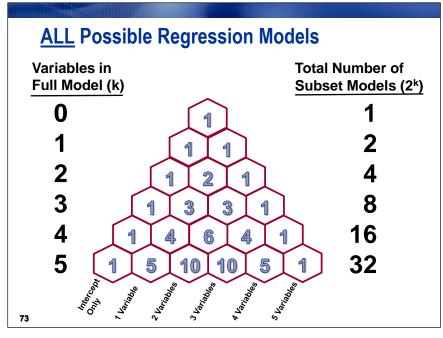
This SASEG is the beginning of SASEG 9C and was originally 9C but 9D had this content with additional content and so was combined. R. Freeze


(Fall 2015)

Sources (adapted with permission)-

T. P. Cronan, Jeff Mullins, Ron Freeze, and David E. Douglas Course and Classroom Notes Enterprise Systems, Sam M. Walton College of Business, University of Arkansas, Fayetteville Microsoft Enterprise Consortium IBM Academic Initiative SAS<sup>®</sup> Multivariate Statistics Course Notes & Workshop, 2010 SAS<sup>®</sup> Advanced Business Analytics Course Notes & Workshop, 2010 Microsoft<sup>®</sup> Notes Teradata<sup>®</sup> University Network


Copyright © 2013 ISYS 5503 Decision Support and Analytics, Information Systems; Timothy Paul Cronan. For educational uses only - adapted from sources with permission. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission from the author/presenter.


# **Model Building and Interpretation**



A process for selecting models might be to start with all the variables in the **Fitness** data set and eliminate the least significant terms, based on *p*-values.

For a small data set, a final model can be developed in a reasonable amount of time. If you start with a large model, however, eliminating one variable at a time can take an extreme amount of time. You would have to continue this process until only terms with p-values lower than some threshold value, such as 0.10 or 0.05, remain.





All-Possible Regression Techniques have in common that they literally assess each possible subset model of a given set of predictor variables in a regression model. The assessment is based on some overall model statistic value (such as R-Squared, Adjusted R-Square and Mallows'  $C_P$ ). For a model with 2 predictor variables, X1 and X2, in the MODEL statement, there are 4 possible subset models: one intercept-only model (which is always a subset model); the X1 model; the X2 model; and the X1 X2 model. The intercept-only model is typically disregarded. The number of subset models for a set of *k* variables is  $2^k$  or  $2^k$ -1, ignoring the intercept-only model.

In the **Fitness** data set, there are 7 possible independent variables. Therefore, there are  $2^7 - 1 = 127$  possible regression models. There are 7 possible one-variable models, 21 possible two-variable models, 35 possible three-variable models, and so on.

If there were 20 possible independent variables, there would be over 1,000,000 models. The number of calculations needed increases exponentially with the number of variables in the full model, so one must be cautious in judging when to use these techniques.

In a later demonstration, you will see another set of model selection techniques that do not have to examine all the models to help you choose a set of candidate "best subset" models.

# Mallows' C<sub>p</sub>

- Mallows' C<sub>p</sub> is a simple indicator of model bias. Models with a large C<sub>p</sub> are biased.
- Look for models with C<sub>p</sub> ≤ p, where p equals the number of parameters in the model, including the intercept.
- Mallows recommends choosing the first (fewest variables) model where C<sub>p</sub> approaches p.

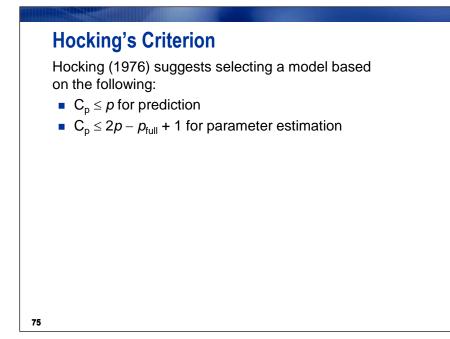
$$C_{p} = p + \frac{\left(MSE_{p} - MSE_{full}\right)(n-p)}{MSE_{full}}$$

74

Mallows' C<sub>p</sub> (1973) is estimated by C<sub>p</sub> =  $p + \frac{(MSE_p - MSE_{full})(n-p)}{MSE_{full}}$ 

where

 $MSE_p$  is the mean squared error for the model with p parameters.


MSE<sub>full</sub> is the mean squared error for the full model used to estimate the true residual variance.

*n* is the number of observations.

*p* is the number of parameters, including an intercept parameter, if estimated.

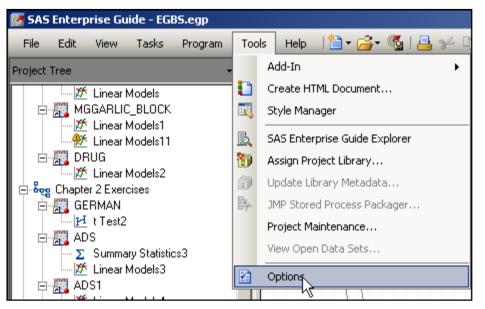
Bias in this context refers to the model underfitting or overfitting the data. In other words, important variables are left out of the model or there are redundant predictor variables in the model.

The choice of the best model based on  $C_p$  is up for some debate, as will be shown in the slide about Hocking's criterion. Many choose the model with the smallest  $C_p$  value. However, Mallows recommended that the best model will have a  $C_p$  value approximating *p*. The most parsimonious model that fits that criterion is generally considered to be a good choice, although subject-matter knowledge should also be a guide in the selection from among competing models. A *parsimonious* model is one with as few parameters as possible for a given degree of quality (predictive or explanatory ability).



Hocking suggested the use of the C<sub>p</sub> statistic, but with alternative criteria, depending on the purpose of the analysis. His suggestion of  $(C_p \le 2p - p_{full} + 1)$  is included in the REG procedure's calculations of criteria reference plots for best models.

## **Automatic Model Selection**




Invoke the Linear Regression task to produce a regression of **Oxygen\_Consumption** on all the other variables in the **Fitness** data set and produce plots with tool (data) tips to aid in exploration of the results.



Plots with tool tips can only be created in HTML file, so before the task is created, the option to create HTML output must be selected in SAS Enterprise Guide.

1. Click <u>Tools</u>  $\Rightarrow$  <u>Options</u>.



2. In the window that opens, select <u>Results General</u> under Results at the left and then uncheck the box for <u>SAS Report</u> and check the box for <u>HTML</u>.

| General<br>Project Views | 3       | Results > Results G | eneral |                    |   |     |  |
|--------------------------|---------|---------------------|--------|--------------------|---|-----|--|
| Project Reco             | very    | Result Formats      |        |                    |   |     |  |
| Results                  |         |                     |        |                    |   |     |  |
| Results 6                | ieneral | SAS Report          |        | R HTML             |   | PDF |  |
| Viewer                   |         | □ BTE               |        | K<br>☐ Text output |   |     |  |
| SAS Rep                  | ort     |                     |        | i Text output      |   |     |  |
| HTML                     |         | Default:            | HTML   |                    | - |     |  |
| RTF                      |         |                     | ,      |                    |   |     |  |

Now you are ready to run the Linear Regression task.

- 4. With the <u>Fitness</u> data set selected, click <u>Tasks</u>  $\Rightarrow$  <u>Regression</u>  $\Rightarrow$  <u>Linear Regression...</u>.
- 5. Drag **Oxygen\_Consumption** to the dependent variable task role and all other numeric variables to the explanatory variables task role.

| Z | Linear Regressio                                           | n2 for Local:SASUSER.FITNESS                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                      |        |
|---|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|   | Data<br>Model                                              | Data                                                                                                                                                        |        |                                                                                                                                                                                                                                                                                                                                      |        |
|   | Statistics<br>Plots<br>Predictions<br>Titles<br>Properties | Data source: Local:SASUSER.Fl<br>Task filter: None                                                                                                          | ITNESS |                                                                                                                                                                                                                                                                                                                                      |        |
|   |                                                            | Variables to assign:<br>Name<br>Name<br>Conder<br>RunTime<br>Age<br>Veight<br>Oxygen_Consumption<br>Run_Pulse<br>Rest_Pulse<br>Maximum_Pulse<br>Performance | 4      | Task roles:         Dependent variable (Limit: 1)         Daygen_Consumption         Explanatory variables         Run Ane         Age         Weight         Run Pulse         Rest_Pulse         Maximum_Pulse         Performance         Group analysis by         Frequency count (Limit: 1)         Relative weight (Limit: 1) | ∲<br>₹ |

6. With <u>Model</u> selected at the left, find the pull-down menu for Model selection method and click **▼** to find <u>Mallows' Cp selection</u> at the bottom.

| 🗵 Lir | Linear Regression2 for Local:SASUSER.FITNESS |                                  |   |  |  |  |
|-------|----------------------------------------------|----------------------------------|---|--|--|--|
|       | ata<br>odel<br>atistics                      | Model                            |   |  |  |  |
| Plo   |                                              | Model selection method:          |   |  |  |  |
| Pre   | edictions                                    | Full model fitted (no selection) | • |  |  |  |
| Tit   | les                                          | Forward selection                |   |  |  |  |
| Pro   | operties                                     | Backward elimination             |   |  |  |  |
|       |                                              | Stepwise selection               |   |  |  |  |
|       |                                              | Maximum R-squared improvement    |   |  |  |  |
|       | Minimum R-squared improvement                |                                  |   |  |  |  |
|       |                                              | R-squared selection              |   |  |  |  |
|       |                                              | Adjusted R-squared selection     |   |  |  |  |
|       |                                              | Mallows' Cp selection            | • |  |  |  |
|       |                                              | Model III statistics.            |   |  |  |  |

Note – under Plots, leave the defaults checked – Show plots for regression analysis > all appropriate plots

7. Click Preview code

- 8. Enable the Show custom code insertion points box
- 9. Scroll down and under the ODS GRAPHICS ON statement, type ODS GRAPHICS / IMAGEMAP=ON; in the <insert custom code here> area

```
      Code Preview for Task
      Image: Code generated points

      Image: Code generated by SAS Task
      Code generated by SAS Task

      Generated on: Thursday, September 17, 2015 at 2:18:06

      By task: Linear Regression (7)

      Input Data: SASApp:ISYS 5713 Shared Datasets.FITNESS

      Server: SASApp

      ODS GRAPHICS ON;

      /* Start of custom user code (Framework_BeforeTaskCode)

      ODS GRAPHICS / IMAGEMAP=ON

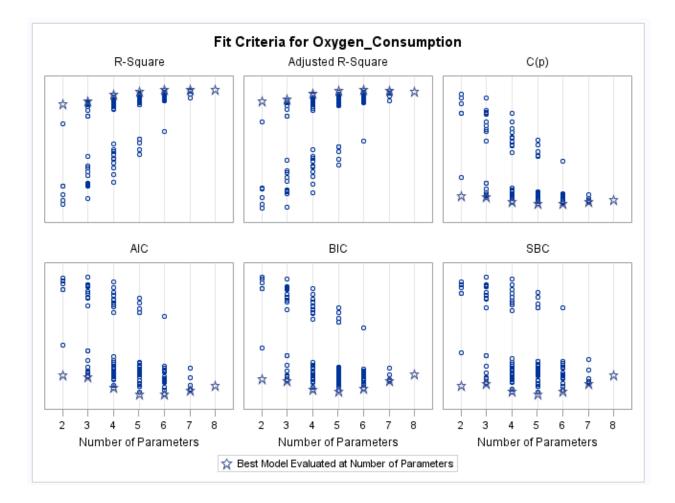
      /* End of custom user code (Framework_BeforeTaskCode) */
```

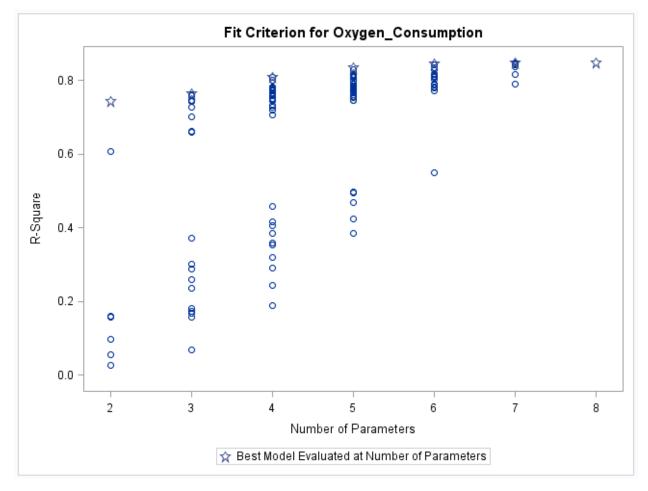
10. Click 🗵 in the Code Preview for Task window.

11. Click Run

#### Partial HTML Output

### Linear Regression Results


The REG Procedure Model: Linear\_Regression\_Model Dependent Variable: Oxygen\_Consumption


C(p) Selection Method

Number of Observations Read 31 Number of Observations Used 31

| Model | Number in |        |          |                                                               |  |  |
|-------|-----------|--------|----------|---------------------------------------------------------------|--|--|
| Index | Model     | C(p)   | R-Square | Variables in Model                                            |  |  |
| 1     | 4         | 4.0004 | 0.8355   | Time Age Run_Pulse Maximum_Pulse                              |  |  |
| 2     | 5         | 4.2598 | 0.8469   | RunTime Age Weight Run_Pulse Maximum_Pulse                    |  |  |
| 3     | 5         | 4.7158 | 0.8439   | RunTime Weight Run_Pulse Maximum_Pulse Performance            |  |  |
| 4     | 5         | 4.7168 | 0.8439   | RunTime Age Run_Pulse Maximum_Pulse Performance               |  |  |
| 5     | 4         | 4.9567 | 0.8292   | InTime Run_Pulse Maximum_Pulse Performance                    |  |  |
| 6     | 3         | 5.8570 | 0.8101   | unTime Run_Pulse Maximum_Pulse                                |  |  |
| 7     | 3         | 5.9367 | 0.8096   | nTime Age Run_Pulse                                           |  |  |
| 8     | 5         | 5.9783 | 0.8356   | RunTime Age Run_Pulse Rest_Pulse Maximum_Pulse                |  |  |
| 9     | 5         | 5.9856 | 0.8356   | Age Weight Run_Pulse Maximum_Pulse Performance                |  |  |
| 10    | 6         | 6.0492 | 0.8483   | RunTime Age Weight Run_Pulse Maximum_Pulse Performance        |  |  |
| 11    | 6         | 6.1758 | 0.8475   | RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse         |  |  |
| 12    | 6         | 6.6171 | 0.8446   | RunTime Weight Run_Pulse Rest_Pulse Maximum_Pulse Performance |  |  |

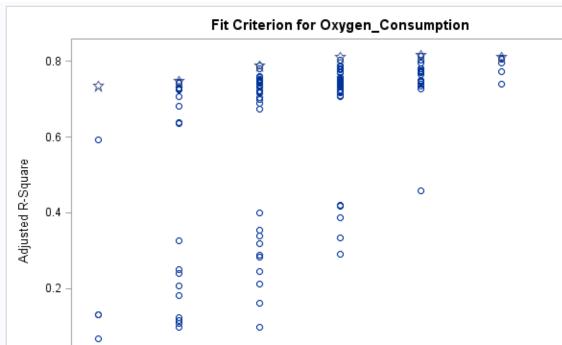
There are many models to compare. It would be unwieldy to try to determine the best model by viewing the output tables. Therefore, it is advisable to look at the plots.

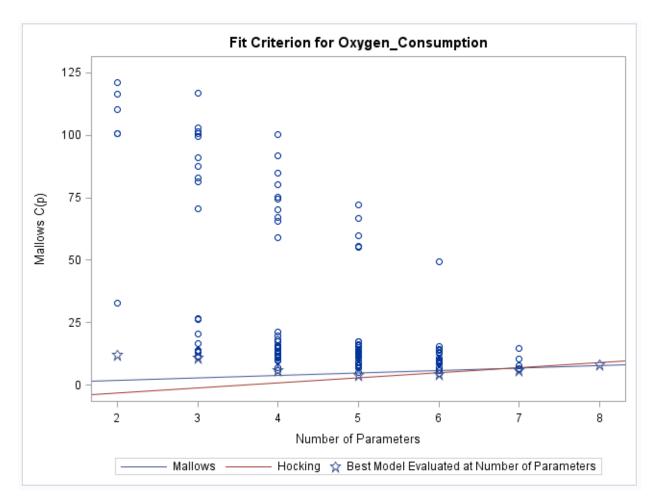




The first plot is a panel plot of several plots assessing each of the 127 possible subset models. Three of them will be further described below.

The R-Square plot compares all models based on their R<sup>2</sup> values. As noted earlier, adding variables to a model will always increase R<sup>2</sup> and therefore the full model will always be best. Therefore, one can only use the R<sup>2</sup> value to compare models of equal numbers of parameters.

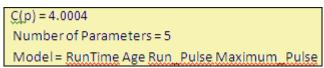

Fit Criterion for Oxygen\_Consumption 0 0 0.8 ☆ ☆ 0.6 Adjusted R-Square 0.4 0.2 0.0 


The model with the greatest R<sup>2</sup> values are represented by stars within each category of "Number of Parameters".

The Adjusted R-Square does not have the problem that the R-Square has. One can compare models of differing sizes. In this case, it is difficult to see which model has the higher Adjusted R-Square, the starred model for 6 parameters or 7 parameters.

Number of Parameters

🙀 Best Model Evaluated at Number of Parameters






The line  $C_p = p$  is plotted to help you identify models that satisfy the criterion  $C_p \le p$  for prediction. The lower line is plotted to help identify which models satisfy Hocking's criterion  $C_p \le 2p - p_{full} + 1$  for parameter estimation.

Use the graph and review the output to select a relatively short list of models that satisfy the criterion appropriate for your objective. The first model to fall below the line for Mallows' criterion has five parameters. The first model to fall below Hocking's criterion has 6 parameters.

With tool tips activated using the IMAGEMAP=ON option, scrolling your mouse over an observation will cause a data box to hover over your mouse containing data values represented by that observation. In this case, the expanded data box shows that the first model that has a Cp value below the green threshold (where Cp=p) is:



In this example the number of variables in the full model,  $p_{\text{full}}$ , equals 8 (7 variables plus the intercept).

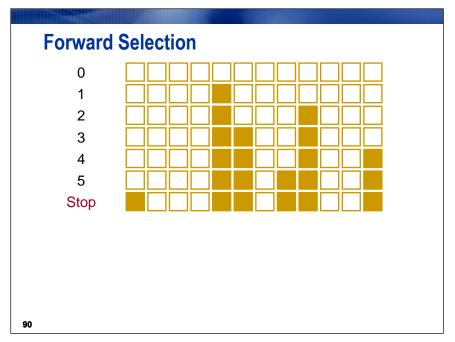
The smallest model with an observation below the Mallows line has p = 5 (Number in Model = 4). The model with the star at 5 parameters and the model just above it are considered "best", based on Mallows' original criterion. The starred model has a  $C_p = 4.004$ , satisfying Mallows' criterion (Oxygen\_Consumption = Runtime Age Run\_Pulse Maximum\_Pulse) and the one above has a value of 4.9567 (Oxygen\_Consumption = Performance Runtime Run\_Pulse Maximum\_Pulse). The only difference between the two models is that the first includes Age and the second includes Performance. By the strictest definition, the second model should be selected, because its  $C_p$  value is closest to p.

The smallest model that shows under the Hocking line has p=6. The model with the smaller  $C_p$  value will be considered the "best" explanatory model. The table shows the first model with p=6 is **Oxygen\_Consumption = Runtime Age Weight Run\_Pulse Maximum\_Pulse**, with a  $C_p$ value of 4.2598. Two other models that are also below the Hocking line (they are nearly on top of one another in the plot) are **Oxygen\_Consumption = Performance Runtime Weight Run\_Pulse Maximum\_Pulse** and **Oxygen\_Consumption = Performance Runtime Age Run\_Pulse Maximum\_Pulse**.

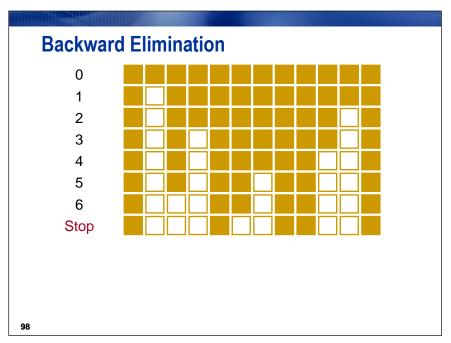
|    | "Best" Models – Prediction                                                                             |                                                                                  |                                                   |  |  |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|--|--|
|    | The two best candidate models based on Mallows' original criterion includes these regressor variables: |                                                                                  |                                                   |  |  |  |  |  |  |  |  |
|    |                                                                                                        |                                                                                  |                                                   |  |  |  |  |  |  |  |  |
|    | p = 5                                                                                                  | C <sub>p</sub> = 4.9567<br>R <sup>2</sup> =0.8292<br>Adj. R <sup>2</sup> =0.8029 | Performance, RunTime, Run_Pulse,<br>Maximum_Pulse |  |  |  |  |  |  |  |  |
|    |                                                                                                        |                                                                                  |                                                   |  |  |  |  |  |  |  |  |
| 77 |                                                                                                        |                                                                                  |                                                   |  |  |  |  |  |  |  |  |

Some models might be essentially equivalent based on their  $C_p$ ,  $R^2$  or other measures. When, as in this case, there are several candidate "best" models, it is up to the investigator to determine which model makes most sense based on theory and experience. The choice between these two models is essentially the choice between **Age** and **Performance**. Because age is much easier to measure than the subjective measure of fitness, the first model is selected here.

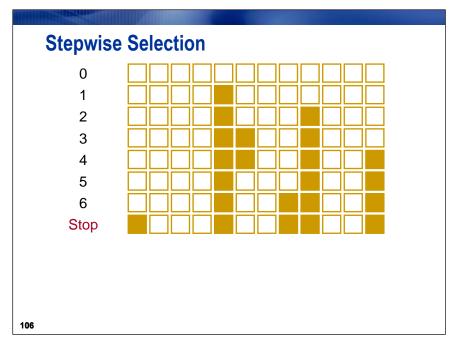
A limitation of the evaluation you have done thus far is that you do not know the magnitude and signs of the coefficients of the candidate models or their statistical significance.


# **Using Stepwise Methods**

| Stepwise Selection Methods |                         |  |  |  |  |  |
|----------------------------|-------------------------|--|--|--|--|--|
|                            | FORWARD<br>SELECTION    |  |  |  |  |  |
| -                          | BACKWARD<br>ELIMINATION |  |  |  |  |  |
|                            | STEPWISE<br>SELECTION   |  |  |  |  |  |
| 83                         |                         |  |  |  |  |  |


The all-possible regression technique that was discussed can be computer intensive, especially if there are a large number of potential independent variables.

The Linear Regression task also offers the following model selection options:


| Forward selection    | first selects the best one-variable model. Then it selects the best two variables among those that contain the first selected variable. Forward selection continues this process, but stops when it reaches the point where no additional variables have a <i>p</i> -value below some threshold (by default 0.50). |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Backward elimination | starts with the full model. Next, the variable that is least significant, given the other variables, is removed from the model. Backward elimination continues this process until all of the remaining variables have a <i>p</i> -value below some threshold (by default 0.10).                                    |
| Stepwise selection   | works like a combination of the two previous methods. The default <i>p</i> -value threshold for entry is 0.15 and the default <i>p</i> -value threshold for removal is also 0.15.                                                                                                                                  |



Forward selection starts with an empty model. The method computes an F statistic for each predictor variable not in the model and examines the largest of these statistics. If it is significant at a specified significance level, the corresponding variable is added to the model. After a variable is entered in the model, it is never removed from the model. The process is repeated until none of the remaining variables meet the specified level for entry.



Backward elimination starts off with the full model. Results of the F test for individual parameter estimates are examined, and the least significant variable that falls above the specified significance level is removed. After a variable is removed from the model, it remains excluded. The process is repeated until no other variable in the model meets the specified significance level for removal.



Stepwise selection is similar to forward selection in that it starts with an empty model and incrementally builds a model one variable at a time. However, the method differs from forward selection in that variables already in the model do not necessarily remain. The backward component of the method removes variables from the model that do not meet the significance specified selection criterion. The stepwise selection process terminates if no further variable can be added to the model or if the variable just entered into the model is the only variable removed in the subsequent backward elimination.

Stepwise selection (forward, backward, and stepwise) has some serious shortcomings and is not the final answer. Simulation studies (Derksen and Keselman 1992) evaluating variable selection techniques found the following – collinearity (correlation among explanatory variables) and entry of noise variables.

One recommendation is to use the variable selection methods to create several candidate models, and then use subject-matter knowledge to select the variables that result in the best model within the scientific or business context of the problem. Therefore, you are simply using these methods as a useful tool in the model-building process (Hosmer and Lemeshow 2000).

# **Stepwise Regression**



Select a model for predicting **Oxygen\_Consumption** in the **Fitness** data set by using the forward, backward and stepwise methods.

## Let's Begin with Forward Selection

- 1. With the <u>Fitness</u> data set selected, click <u>Tasks</u>  $\Rightarrow$  <u>Regression</u>  $\Rightarrow$  <u>Linear Regression</u>...
- 2. Drag **Oxygen\_Consumption** to the dependent variable task role and all other numeric variables to the explanatory variables task role.

| Linear Regressio                                                            | n2 for Local:SASUSER.FITNESS                                                                                                                                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Data<br>Model<br>Statistics<br>Plots<br>Predictions<br>Titles<br>Properties | Data<br>Data source: Local:SASUSER.FI<br>Task filter: None                                                                                                  | TNESS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|                                                                             | Variables to assign:<br>Name<br>Name<br>Gender<br>RunTime<br>Age<br>Weight<br>Oxygen_Consumption<br>Run_Pulse<br>Rest_Pulse<br>Maximum_Pulse<br>Performance | 4     | Task roles:<br>Dependent variable (Limit: 1)<br>Dxygen_Consumption<br>Explanatory variables<br>Date of the second s | <b>今</b> |

3. With <u>Model</u> selected at the left, find the pull-down menu for Model selection method and click to find <u>Forward selection</u> at the bottom.

| ata<br>Iodel                                               | Model                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                              |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Statistics<br>Plots<br>Predictions<br>Titles<br>Properties | Model selection method:          Full model fitted (no selection)         Full model fitted (no selection)         Forward velection         Backward velection         Backward velection         Maximum R-squared improvement         Minimum R-squared improvement         R-squared selection         Adjusted R-squared selection | Effects to force into the model:<br>When items are checked within the list<br>below, they will become 'selected' and<br>transferred to this list.<br>The 'selected' items may then be<br>reordered within this list by highlighting<br>them and then using the up and down<br>arrow buttons. |  |
| Preview code                                               | Specifies the model that you want to use to fit your da<br>No model is selected. This is the default. The model t<br>and Explanatory variables task roles is used.<br>Bun                                                                                                                                                               | ✓ Include intercept<br>ata.<br>hat is created when you assigned the Dependent variables           ▼         Save         Cancel         He                                                                                                                                                   |  |

4. With <u>Titles</u> selected at the left, deselect the box for <u>Use default text</u> and then type Forward Selection Results in the text area.

| Data<br>Model<br>Statistics                  | Titles                                                   |                                                                                |
|----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|
| Plots<br>Predictions<br>Titles<br>Properties | Section:<br>Linear Regression<br>Predictions<br>Footnote | Text for section: Linear Regression Use default text Forward Selection Results |
| ick Bun                                      | V FOUNDIR                                                |                                                                                |

### **Forward Selection Results**

The REG Procedure Model: Linear\_Regression\_Model Dependent Variable: Oxygen\_Consumption

| Number of Observations Read | 31 |
|-----------------------------|----|
| Number of Observations Used | 31 |

#### Forward Selection: Step 1

#### Variable RunTime Entered: R-Square = 0.7434 and C(p) = 11.9967

| Analysis of Variance |                                                   |      |                   |            |         |        |  |  |
|----------------------|---------------------------------------------------|------|-------------------|------------|---------|--------|--|--|
| Source               |                                                   | DF   | Sum of<br>Squares |            | F Value | Pr > F |  |  |
| Model                | Model                                             |      | 633.01458         | 633.01458  | 84.00   | <.0001 |  |  |
| Error                |                                                   | 29   | 218.53997         | 7.53586    |         |        |  |  |
| Corrected            | Total                                             | 30   | 851.55455         |            |         |        |  |  |
| Variable             | Variable Estimate Error Type II SS F Value Pr > F |      |                   |            |         |        |  |  |
| Intercept            | 82.42                                             | 2494 |                   | 3443.63138 |         | <.0001 |  |  |
| RunTime              | -3.3                                              | 1085 | 0.36124           | 633.01458  | 84.00   | <.0001 |  |  |

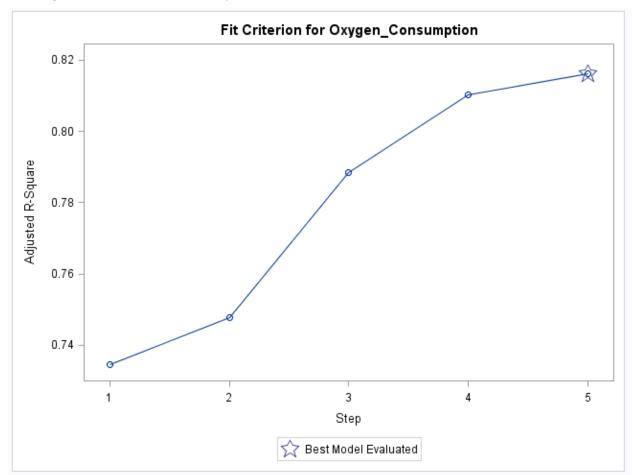
After the first step, one variable, **RunTime**, is in the model. If there are any variables that contribute significantly (*p*-value < 0.50, when controlling for **RunTime**) then the variable with the smallest *p*-value will be added to the model at the next step.

#### Forward Selection: Step 2

#### Variable Age Entered: R-Square = 0.7647 and C(p) = 10.7530

|                 | Analysis of Variance |      |                   |            |         |        |
|-----------------|----------------------|------|-------------------|------------|---------|--------|
| Source [        |                      | DF   | Sum of<br>Squares | Mean       | F Value | Pr > F |
| Model           |                      | 2    |                   | 325.59640  | 45.50   | <.0001 |
| Error           |                      | 28   | 200.36175         | 7.15578    |         |        |
| Corrected Total |                      | 30   | 851.55455         |            |         |        |
|                 | Param                | eter | Standard          |            |         |        |
| Variable        | Estin                | nate | Error             | Type II SS | F Value | Pr > F |
| Intercept       | 88.43                | 3358 | 5.32255           | 1975.38438 | 276.05  | <.0001 |
| RunTime         | -3.19                | 9917 | 0.35892           | 568.50196  | 79.45   | <.0001 |
| Age             | -0.15                | 5082 | 0.09463           | 18.17822   | 2.54    | 0.1222 |

At step 2, Age is added to the model. The *p*-value associated with Age is 0.1222, which meets the

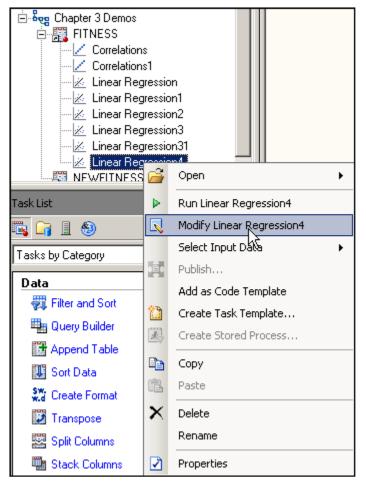

significance level requirement set in the task.

Several steps are not displayed.

|      | Summary of Forward Selection  |         |          |          |         |         |        |  |
|------|-------------------------------|---------|----------|----------|---------|---------|--------|--|
|      | Variable Number Partial Model |         |          |          |         |         |        |  |
| Step | Entered                       | Vars In | R-Square | R-Square | C(p)    | F Value | Pr > F |  |
| 1    | RunTime                       | 1       | 0.7434   | 0.7434   | 11.9967 | 84.00   | <.0001 |  |
| 2    | Age                           | 2       | 0.0213   | 0.7647   | 10.7530 | 2.54    | 0.1222 |  |
| 3    | Run_Pulse                     | 3       | 0.0449   | 0.8096   | 5.9367  | 6.36    | 0.0179 |  |
| 4    | Maximum_Pulse                 | 4       | 0.0259   | 0.8355   | 4.0004  | 4.09    | 0.0534 |  |
| 5    | Weight                        | 5       | 0.0115   | 0.8469   | 4.2598  | 1.87    | 0.1836 |  |

The model selected at each step is printed and a summary of the sequence of steps is given at the end of the output. In the summary, the variables are listed in the order in which they were selected. The partial  $R^2$  shows the increase in the model  $R^2$  as each term was added.

The model selected has the same variables as the model chosen using Mallows' Cp selection with the Hocking criterion. This will not always be the case.




The Adjusted R-Square plot shows the progression of that statistic at each step. The star denotes the best model of the 5 tested. This is not necessarily the highest Adjusted R-Square value of all possible subsets, but is the best of the five tested in the forward selection model.

## **Backward Elimination**

Next, rerun the task using backward elimination.

1. Reopen the previous task by right clicking the icon in the Project Tree and selecting Modify Linear Regression4 from the drop-down menu.



2. With <u>Model</u> selected, change the model selection method in the drop-down menu to <u>Backward elimination</u>.

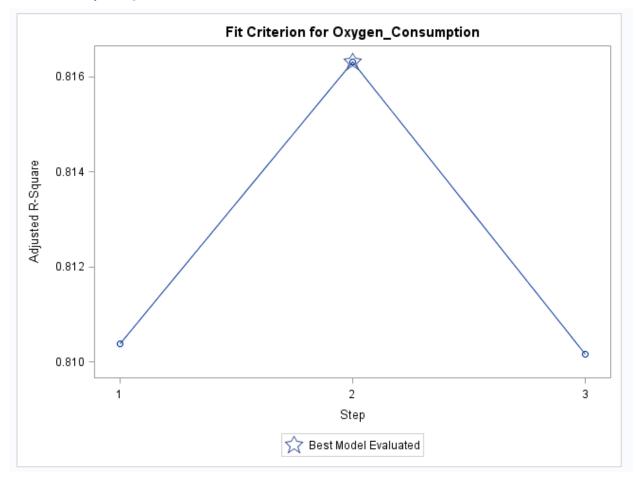
| ∠L  | inear Regressio     | n4 for Local:SASUSER.FITNESS  |
|-----|---------------------|-------------------------------|
| N   | Data<br>Model       | Model                         |
|     | Statistics<br>Plots | Model selection method:       |
|     | Predictions         | Forward selection             |
| T 📔 | Fitles              | Forward selection             |
| F   | Properties          | Backward elimination          |
|     |                     | Stepwise selective            |
|     |                     | Maximum R-squared improvement |
|     |                     | Minimum R-squared improvement |
|     |                     | R-squared selection           |
|     |                     | Adjusted R-squared selection  |
|     |                     | Mallows' Cp selection         |

- 3. Change the title to **Backward Elimination Results** in the text area.
- 4. Click Run
- 5. Do not replace the results of the previous run.

| SAS Ente | rprise Guide                                                                                                                                 | 1 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|---|
| ?        | Do you want to replace the results from the previous run?<br>Choosing "No" will save the changes to a new task, named "Linear Regression41". |   |
|          | Yes Ng Cancel                                                                                                                                |   |

Partial Output

### **Backward Elimination Results**


#### The REG Procedure Model: Linear\_Regression\_Model Dependent Variable: Oxygen\_Consumption

| Variable      | Parameter<br>Estimate | Error    | Type II SS |       |        |
|---------------|-----------------------|----------|------------|-------|--------|
| Intercept     | 97.16952              | 11.65703 | 374.42127  | 69.48 | <.0001 |
| RunTime       | -2.77576              | 0.34159  | 355.82682  | 66.03 | <.0001 |
| Age           | -0.18903              | 0.09439  | 21.61272   | 4.01  | 0.0557 |
| Run_Pulse     | -0.34568              | 0.11820  | 46.08558   | 8.55  | 0.0071 |
| Maximum_Pulse | 0.27188               | 0.13438  | 22.05933   | 4.09  | 0.0534 |

All variables left in the model are significant at the 0.1000 level.

| Summary of Backward Elimination |                               |         |          |          |        |         |        |
|---------------------------------|-------------------------------|---------|----------|----------|--------|---------|--------|
|                                 | Variable Number Partial Model |         |          |          |        |         |        |
| Step                            | Removed                       | Vars In | R-Square | R-Square | С(р)   | F Value | Pr > F |
| 1                               | Rest_Pulse                    | 6       | 0.0003   | 0.8483   | 6.0492 | 0.05    | 0.8264 |
| 2                               | Performance                   | 5       | 0.0014   | 0.8469   | 4.2598 | 0.22    | 0.6438 |
| 3                               | Weight                        | 4       | 0.0115   | 0.8355   | 4.0004 | 1.87    | 0.1836 |

Using the backward elimination option and the default p-value criterion for staying in the model, three independent variables were eliminated. By coincidence the final model is the same as the one considered best base on  $C_p$ , using the Mallows criterion.



The Adjusted R-Square for the model at step 2 (before **Weight** was removed) was greatest of the three tested. Note the scale of the Y-axis for Adjusted R-Square. The differences in value among the three values is minimal. A [0-1] scale for the access would have shown how small the differences truly are.

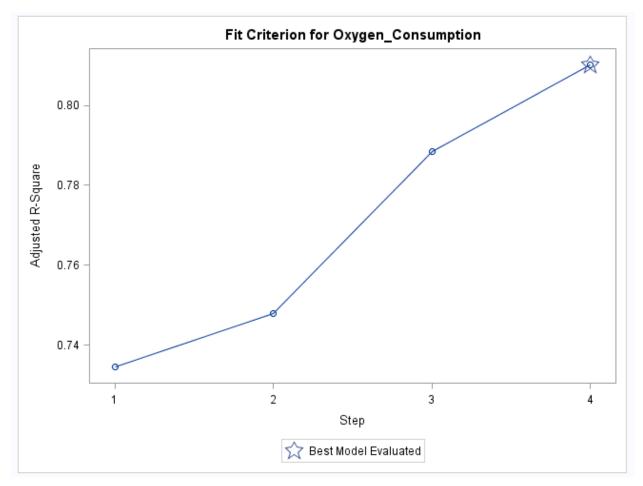
### Finally, run the Stepwise selection model.

- 1. Reopen the previous task by right clicking the icon in the Project Tree and selecting **Modify...** from the drop-down menu.
- 2. With <u>Model</u> selected, change the model selection method in the drop-down menu to <u>Stepwise selection</u>.
- 3. Change the title to Stepwise Selection Results in the text area.
- 4. Click Run
- 5. Do not replace the results of the previous run.

Partial Output

### **Stepwise Selection Results**

#### The REG Procedure Model: Linear\_Regression\_Model Dependent Variable: Oxygen\_Consumption


| Analysis of Variance                                                                                          |    |           |           |       |        |
|---------------------------------------------------------------------------------------------------------------|----|-----------|-----------|-------|--------|
| Sum of         Mean           Source         DF         Squares         Square         F Value         Pr > F |    |           |           |       |        |
| Model                                                                                                         | 4  | 711.45087 | 177.86272 | 33.01 | <.0001 |
| Error                                                                                                         | 26 | 140.10368 | 5.38860   |       |        |
| Corrected Total                                                                                               | 30 | 851.55455 |           |       |        |

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.

|      | Summary of Stepwise Selection |                     |                   |        |        |         |         |        |
|------|-------------------------------|---------------------|-------------------|--------|--------|---------|---------|--------|
| Step | Variable<br>Entered           | Variable<br>Removed | Number<br>Vars In |        |        | C(p)    | F Value | Pr > F |
| 1    | RunTime                       |                     | 1                 | 0.7434 | 0.7434 | 11.9967 | 84.00   | <.0001 |
| 2    | Age                           |                     | 2                 | 0.0213 | 0.7647 | 10.7530 | 2.54    | 0.1222 |
| 3    | Run_Pulse                     |                     | 3                 | 0.0449 | 0.8096 | 5.9367  | 6.36    | 0.0179 |
| 4    | Maximum_Pulse                 |                     | 4                 | 0.0259 | 0.8355 | 4.0004  | 4.09    | 0.0534 |

Using stepwise selection and the default *p*-value, the same subset resulted as that using backward elimination. However, it is not the same model as that resulting from forward selection.



The default entry criterion is  $p \le .50$  for the forward selection method and  $p \le .15$  for the stepwise selection method. After **RunTime** was entered into the model, **Age** was entered at step 2 with a *p*-value of 0.1222. If the criterion were set to something less than 0.10, the final model would have been quite different. It would have included only one variable, **RunTime**. This underscores the precariousness of relying on one stepwise method for defining a "best" model.

**Comparing Forward, Backward, & Stepwise Results** 

| Stepwise Regres | Stepwise Regression Models                           |  |  |  |  |  |
|-----------------|------------------------------------------------------|--|--|--|--|--|
| FORWARD         | Runtime, Age, Weight,<br>Run_Pulse,<br>Maximum_Pulse |  |  |  |  |  |
| BACKWARD        | Runtime, Age,<br>Run_Pulse,<br>Maximum_Pulse         |  |  |  |  |  |
| STEPWISE        | Runtime, Age,<br>Run_Pulse,<br>Maximum_Pulse         |  |  |  |  |  |
| 109             |                                                      |  |  |  |  |  |

The final models obtained using the default selection criteria are displayed. It is important to note that the choice of criterion levels can greatly affect the final models that are selected using stepwise methods.

| Stepwise Models, A                         | Alternative Criteria                 |
|--------------------------------------------|--------------------------------------|
| FORWARD<br>(slentry=0.05)                  | Runtime                              |
| BACKWARD<br>(slstay=0.05)                  | Runtime, Run_Pulse,<br>Maximum_Pulse |
| STEPWISE<br>(slentry=0.05,<br>slstay=0.05) | Runtime                              |
| 110                                        |                                      |

The final models using 0.05 as the forward and backward step criteria resulted in very different models than those chosen using the default criteria.

| Comparison of Sel       | ection Methods                                                                                                                 |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Stepwise regression     | uses fewer computer resources.                                                                                                 |
| All-possible regression | generates more candidate<br>models that might have nearly<br>equal R <sup>2</sup> statistics and C <sub>p</sub><br>statistics. |
| 111                     |                                                                                                                                |

The stepwise regression methods have an advantage when there are a large number of independent variables.

With the all-possible regressions techniques, you can compare essentially equivalent models and use your knowledge of the data set and subject area to select a model that is more easily interpreted.