 
20	
	  	19
[bookmark: Var_ChapterTitle_001]SASEG 9B – Regression Assumptions













(Fall 2015)






Sources (adapted with permission)-
T. P. Cronan, Jeff Mullins, Ron Freeze, and David E. Douglas Course and Classroom Notes
Enterprise Systems, Sam M. Walton College of Business, University of Arkansas, Fayetteville
Microsoft Enterprise Consortium
IBM Academic Initiative
SAS® Multivariate Statistics Course Notes & Workshop, 2010  
SAS® Advanced Business Analytics Course Notes & Workshop, 2010
Microsoft® Notes
Teradata® University Network

Copyright © 2013 ISYS 5503 Decision Support and Analytics, Information Systems; Timothy Paul Cronan.  For educational uses only - adapted from sources with permission.  No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission from the author/presenter.

[bookmark: _Toc200783132][bookmark: _Toc206844438][bookmark: _Toc231882211][bookmark: _Toc231963665][bookmark: _Toc231966287][bookmark: _Toc232847118][bookmark: _Toc234227418][bookmark: _Toc255204328][bookmark: _Toc255208190][bookmark: _Toc255549860][bookmark: _Toc255810879][bookmark: _Toc255817149][bookmark: _Toc255895070]Examining Residuals
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Recall that the model for the linear regression has the form Y=0 + 1X + . When you perform a regression analysis, several assumptions about the error terms must be met to provide valid tests of hypothesis and confidence intervals. The assumptions are that the error terms
have a mean of 0 at each value of the predictor variable
are normally distributed at each value of the predictor variable
have the same variance at each value of the predictor variable
are independent.

[bookmark: Slide_263][image: ]
To illustrate the importance of plotting data, four examples were developed by Anscombe (1973). In each example, the scatter plot of the data values is different. However, the regression equation and the R2 statistic are the same.
In the first plot, a regression line adequately describes the data.
[bookmark: Slide_264][image: ]
In the second plot, a simple linear regression model is not appropriate because you are fitting a straight line through a curvilinear relationship.
[bookmark: bsts41a][bookmark: Slide_265][image: ]
In the third plot, there seems to be an outlying data value that is affecting the regression line. This outlier is an influential data value in that it is substantially changing the fit of the regression line.
[bookmark: Slide_266][image: ]
In the fourth plot, the outlying data point dramatically changes the fit of the regression line. In fact the slope would be undefined without the outlier.
The four plots illustrate that relying on the regression output to describe the relationship between your variables can be misleading. The regression equations and the R2 statistics are the same even though the relationships between the two variables are different. Always produce a scatter plot before you conduct 
a regression analysis.
[bookmark: bsts41b][bookmark: Slide_267][image: ]
To verify the assumptions for regression, you can use the residual values from the regression analysis. Residuals are defined as

	

where  is the predicted value for the ith value of the dependent variable.
You can examine two types of plots when verifying assumptions:
the residuals versus the predicted values
the residuals versus the values of the independent variables 
[bookmark: Slide_268][image: ]
The graphs above are plots of residual values versus predicted values or predictor variable values for four models fit to different sets of data. If model assumptions are valid, then the residual values should be randomly scattered about a reference line at 0. Any patterns or trends in the residuals might indicate problems in the model.
1. The model form appears to be adequate because the residuals are randomly scattered about a reference line at 0 and no patterns appear in the residual values.
2. The model form is incorrect. The plot indicates that the model should take into account curvature in the data. One possible solution is to add a quadratic term as one of the predictor variables.
3. The variance is not constant. As you move from left to right, the variance increases. One possible solution is to transform your dependent variable.
4. The observations are not independent. For this graph, the residuals tend to be followed by residuals with the same sign, which is called autocorrelation. This problem can occur when you have observations that have been collected over time. A possible solution is to use the Regression Analysis with Autoregressive Errors task.
[bookmark: Slide_269][image: ]
Besides verifying assumptions, it is also important to check for outliers. Observations that are far away from the bulk of your data are outliers. These observations are often data errors or reflect unusual circumstances. In either case, it is good statistical practice to detect these outliers and find out why they have occurred.
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[bookmark: respl08]Using the FITNESS data set, invoke the Linear Regression task to test the regression model of Oxygen_Consumption against the predictor variables of RunTime, Age, Run_Pulse and Maximum_Pulse (the model that was best based on Mallows’ Cp prediction criterion). Produce the default graphics. 
1. Create a new project and name it SASEG 9B Demos.

2. Open the FITNESS data set.

[image: ]
3. Select Analyze  Regression  Linear Regression….

[image: ]
4. Drag Oxygen_Consumption to the dependent variable task role and RunTime, Age, Run_Pulse, and Maximum_Pulse to the explanatory variables task role.
[image: ]
5. Click [image: ].
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The histogram of residuals helps you to find outliers and assess the normality assumption.
Note – review SASEG 8A (pp. 12 – 16) regarding interpretation of the plots – much of the information regarding interpretation for a one variable model will be the same for the multiple variable model.

The plot of the residuals versus the values of the independent variables, Runtime, Age, Run_Pulse, and Maximum_Pulse are produced by SASEG. They show no obvious trends or patterns in the residuals. Recall that independence of residual errors (no trends) is an assumption for linear regression, as is constant variance across all levels of all predictor variables (and across all levels of the predicted values, which is seen below).
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The diagnostic plots shown above will be described later in greater detail.
[image: ]

The plot of the residuals against the normal quantiles is shown above left (quantile-quantile plot, also known as the Q-Q Plot). If the residuals are normally distributed, the plot should appear to follow closely a straight, diagonal line. If the plot deviates substantially from the reference line, then there is evidence against normality.

The plot shows little deviation from the expected pattern. Thus, you can conclude that the residuals do not significantly violate the normality assumption. If the residuals did violate the normality assumption, then a transformation of the response variable or a different model might be warranted.

[image: ][image: ]
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More diagnostic plots and plots are included by default, as well as a box and whisker plot for residuals.

6. In order to visually check the assumption of constant variance, you can reopen the last task by right-clicking it and modifying it.
[image: ]
7. With Plots selected at the left, click the radio button next to Custom list of plots. 
The box next to Diagnostic plots should already be checked. In addition, check the boxes next to Residuals by predicted values plot and Residual plots.

[image: ]
8. Click [image: ] and do not replace the results from the previous run.
The plots produced are displayed below:
[image: ]

The Residual by Predicted plot shows no pattern of residuals around the residual mean of 0. One of the assumptions of linear regression is constant variance across all levels of all predictors. This plot, along with the plots of residuals against predictors, helps you to assess that assumption. In this case, there is no clear pattern, indicating no strong evidence against the assumption of constant variance.
[image: ]

The Fit Diagnostics panel plot displays many of the plots seen in the previous part of the demonstration, but on a smaller scale.
[image: ]

The plots of the residuals by each of the predictor variables in the model show no patterns or trends. Again, this lends support to the validity of the constant variance assumption for this regression model.
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Recall in the previous section that you saw examples of data sets where the simple linear regression model fits were essentially the same. However, plotting the data revealed that the model fits were different.
One of the examples showed a highly influential observation like the example above.
Identifying influential observations in multiple linear regression is more complex because you have more predictors to consider.
The Linear Regression task has options to calculate statistics to identify influential observations.
[bookmark: OLE_LINK1][image: ]Selecting the box for Residuals on the Predictions pane creates the standardized residuals, as well as several others discussed previously. Selecting the box for Diagnostic statistics creates the studentized residuals and the DFFITS statistic, as well as several others that are not discussed, such as the Hat Diagonal, Covariance Ratio, and the DFBETAS.

For our purposes, to detect outliers we will use the Studentized Residuals, Cook’s D statistic, and the RSTUDENT residuals.  Note that there are others…

Studentized Residuals - One way to check for outliers is to use the studentized residuals. These are calculated by dividing the residual values by their standard errors. For a model that fits the data well and has no outliers, most of the studentized residuals should be close to 0. In general, studentized residuals that have an absolute value less than 2.0 could have easily occurred by chance. Studentized residuals that are between an absolute value of 2.0 to 3.0 occur infrequently and could be outliers. Studentized residuals that are larger than an absolute value of 3.0 occur rarely by chance alone and should be investigated.
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Cook’s D statistic - To detect influential observations, you can also use Cook’s D statistic. This statistic measures the change in the parameter estimates that results from deleting each observation.
Identify observations above the cutoff and investigate the reasons they occurred.

[image: ]



RSTUDENT Residuals - Recall that studentized residuals are the ordinary residuals divided by their standard errors. The RSTUDENT residuals are similar to the studentized residuals except that they are calculated after deleting the ith observation. In other words, the RSTUDENT residual is the difference between the observed Y and the predicted value of Y excluding this observation from the regression.
If the RSTUDENT residual is different from the studentized residual for a specific observation, that observation is likely to be influential. A suggested cutoff for |RSTUDENT| residuals is greater than 3.
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[bookmark: _Toc206844442][bookmark: _Toc231882215][bookmark: _Toc231963669][bookmark: _Toc231966291][bookmark: _Toc232847122][bookmark: _Toc234227422][bookmark: _Toc255204332][bookmark: _Toc255208194][bookmark: _Toc255549864][bookmark: _Toc255810883][bookmark: _Toc255817153][bookmark: _Toc255895074][image: C:\Program Files\PowerServ\CourseGraphics\demo_eye.jpg]An Exercise - Looking for Influential Observations

[bookmark: bsts42c]Generate the RStudent and Cook’s D influence statistics and plots for the prediction model. 
Save the statistics to an output data set and create a data set with only observations that exceed the suggested cutoffs of the influence statistics. 
Refer to the last task (linear model where you used the FITNESS data set, the regression model of Oxygen_Consumption against the predictor variables of RunTime, Age, Run_Pulse and Maximum_Pulse). 

1. Modify the last task by right-clicking the Project and selecting Modify….

2. With Plots selected at the left, check the boxes shown checked below in the Custom plots area.
	RSTUDENT residuals are referred to as Studentized residuals in the task windows.
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3. With Predictions selected at the left:
a. Check the box for Original sample under Data to predict.
b. Check Predictions and Diagnostic statistics under Save output data.
c. Check the box for Residuals under Additional statistics.
	You can change the name and library of the data set where the diagnostic statistic variables will be stored by clicking [image: ] in the Save output data area.
[image: ]
4. Click [image: ] and do not replace the results from the previous run.
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Along with the other output from the task, a tab for the Output Data table appears. Select that tab to see the data set created with all variables from the Fitness data set, along with several new variables containing values for the diagnostic statistics and residuals, along with relevant standard errors.
Return to the Results tab.




[image: ]
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The RStudent by Predicted plot shows only two values outside the range of [-2,2] and no values outside the range of [-3,3]. These values are not different from what one would normally expect by chance from a normally distributed population.
[image: ]
A horizontal reference line is drawn at the critical value of Cook’s D. Only one observation’s Cook’s D value exceeded that cutpoint and merits further investigation.


5. Right-click the previous task and select Add as a Code Template.
[image: ][image: ]
6. Double-click the node for the code in order to edit it and find the PROC REG section of the code.

TITLE;
TITLE1 "Linear Regression Results";
FOOTNOTE;
FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) on %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), NLTIMAP20.))";
PROC REG DATA=WORK.SORTTempTableSorted
        PLOTS(ONLY)=RSTUDENTBYPREDICTED
        PLOTS(ONLY)=COOKSD
        PLOTS(ONLY)=DFFITS
        PLOTS(ONLY)=DFBETAS
    ;
    Linear_Regression_Model: MODEL Oxygen_Consumption = RunTime Age Run_Pulse Maximum_Pulse
        /        SELECTION=NONE
    ;

    OUTPUT OUT=SASUSER.PREDLINREGPREDICTIONSFITNES_0001(LABEL="Linear regression predictions and statistics for SASUSER.FITNESS")
        PREDICTED=predicted_Oxygen_Consumption 
        RESIDUAL=residual_Oxygen_Consumption 
        STUDENT=student_Oxygen_Consumption 
        RSTUDENT=rstudent_Oxygen_Consumption 
        COOKD=cookd_Oxygen_Consumption 
        DFFITS=dffits_Oxygen_Consumption 
        H=h_Oxygen_Consumption 
        STDI=stdi_Oxygen_Consumption 
        STDP=stdp_Oxygen_Consumption 
        STDR=stdr_Oxygen_Consumption ;
RUN;
QUIT;

7. Make the following changes:
a. Add the option (LABEL) at the end of each PLOTS(ONLY) line.

PROC REG DATA=WORK.SORTTempTableSorted
        PLOTS(ONLY)=RSTUDENTBYPREDICTED(LABEL)
        PLOTS(ONLY)=COOKSD(LABEL)
        PLOTS(ONLY)=DFFITS(LABEL)
        PLOTS(ONLY)=DFBETAS(LABEL)
    ;


b. Add the statement ID NAME; immediately above the OUTPUT statement.

    ID NAME;
    OUTPUT OUT=SASUSER.PREDLINREGPREDICTIONSFITNES_0001(LABEL="Linear regression predictions and statistics for SASUSER.FITNESS")

8. Click [image: ] above the code window.

[image: ]
The RStudent plot shows two observations beyond 2 standard errors from the mean of 0. Those are identified as Sammy and Jack. Because you expect 5% of values to be beyond 2 standard errors from the mean (remember that these RStudent residuals are assumed to be normally distributed), the fact that you have 2 that far out gives no cause for concern (5% of 31 is 1.55 expected observations). William and Gracie have the most extreme “leverage” values, which mean that they are most extreme in the predictor variable space.
[image: ]

The Cook’s D plot shows Gracie to be an influential point.
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If the unusual data are erroneous, correct the errors and reanalyze the data.

Another possibility is that the observation, although valid, could be unusual. If you had a larger sample size, there might be more observations like the unusual ones.
You might have to collect more data to confirm the relationship suggested by the influential observation.

In general, we try not to exclude data. In many circumstances, some of the unusual observations contain important information.  However, if you do choose to exclude some observations, include a description of the types of observations you exclude and provide an explanation. Also discuss the limitation of your conclusions, given the exclusions, as part of your report or presentation.
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In the Fitness data set example, RunTime and Oxygen_Consumption have a strong linear relationship. Performance and Oxygen_Consumption also have a strong linear relationship. In addition, RunTime and Performance are linearly related to a large degree.
[bookmark: Slide_295][image: ]
The goal of multiple linear regression with two predictor variables is to find a best fit plane through the data to predict Oxygen_Consumption. This perspective shows a very strong relationship between the predictor variables RunTime and Performance. You can imagine that the prediction plane you are trying to build is like a tabletop, where the observations guide the angle of the tabletop, relative to the floor, like legs for the table. If the legs line up with one another, then the plane built atop will tend to be unstable.
[bookmark: Slide_296][image: ]
Here is another way of looking at the three dimensions of two predictor variables and a response variable. Where should the prediction plane be placed? The slopes of the prediction plane relative to each X and the Y are the parameter coefficient estimates.
X1 and X2 almost follow a straight line X1 = X2 in the (X1, X2) plane.
Why is this a problem? Two reasons exist.
1. Neither might appear to be significant when both are in the model; however, either might be significant when only one is in the model. Thus, collinearity can hide significant effects. (The reverse can be true as well: collinearity can increase the apparent significance of effects.)
2. Collinearity also increases the variance of the parameter estimates and consequently increases prediction error.
[bookmark: Slide_297][image: ]
This is a representation of a best-fit plane through the data.
[bookmark: Slide_298][image: ]
However, the removal of just one data point (or even just moving the data point) results in a very different prediction plane (as represented by the lighter plane). This illustrates variability of the parameter estimates when there is extreme collinearity.
When collinearity is a problem, the estimates of the coefficients are unstable. This means that they have 
a large variance. Consequently, the true relationship between Y and the Xs might be quite different from that suggested by the magnitude and sign of the coefficients.
[bookmark: bc4s3b1]Collinearity is not a violation of the assumptions of linear regression.
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Generate a regression with Oxygen_Consumption as the dependent variable and Performance, Runtime, Age, Weight, Run_Pulse, Rest_Pulse, and Maximum_Pulse as the independent variables. Compare this model with the Mallows prediction model from the previous section.
1. With the Fitness data set active, select Tasks  Regression  Linear Regression….
2. Drag Oxygen_Consumption to the dependent variable role and all other numeric variables 
to the explanatory variables role.
[image: ]
3. With Plots selected at the left, uncheck the box for Show plots for regression analysis.
[image: ]
4. Click [image: ].

[image: ]


For the full model, Model F is highly significant and the R2 is large. These statistics suggest that the model fits the data well.
· However, when you examine the p‑values of the parameters, only Run_Pulse and Maximum_Pulse are statistically significant.
· Recall that the 4-variable prediction model included Runtime; however, in the full model, this same variable is not statistically significant (p-value=0.2016). The p-value for Age changed from 0.0557 to 0.4401 between the 4-variable model and the full model. 
When you have a highly significant Model F but no (or few) highly significant terms, collinearity is a likely problem.

[bookmark: Slide_303][image: ]
Selected task options:
VIF	provides a measure of the magnitude of the collinearity (Variance Inflation Factor).
Collinearity Analysis	includes the intercept vector when analyzing the X'X matrix for collinearity.
Collinearity (No Intercept)	excludes the intercept vector.
The two Collinearity Analysis options also provide a measure of the magnitude of the problem as well as give information that can be used to identify the sets of Xs that are the source of the problem. They are not described in this course.
[bookmark: Slide_304][image: ]
You can calculate a VIF for each term in the model.
Marquardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the model.
VIFi = 1/(1  Ri2), where Ri2 is the R2 of Xi, regressed on all the other Xs in the model.
For example, if the model is Y = X1 X2 X3 X4, i = 1 to 4.
To calculate the R2 for X3, fit the model X3 = X1 X2 X4. Take the R2 from the model with X3 as the dependent variable and replace it in the formula VIF3 = 1/(1  R32). If VIF3 is greater than 10, X3 is possibly involved in collinearity. 
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Invoke the Linear Regression task and use the VIF option to assess the magnitude of the collinearity problem and identify the terms involved in the problem.
1. Reopen the previous task by right-clicking it and selecting Modify….
2. With Statistics checked at the left, check the box next to Variance inflation values in the Diagnostics area.
[image: ]
3. Click [image: ] and do replace the results from the previous run.
[image: ]
Partial Output
[image: ]
The only change in the output from the previous run of the task is the final column of the Parameter Estimates table. There is now a listing of Variance Inflation values for each predictor variable.
Marquardt (1990) suggests that a VIF > 10 indicates the presence of strong collinearity in the model.
Some of the VIFs are much larger than 10. A severe collinearity problem is present. At this point there are many ways to proceed. However, it is always a good idea to use some subject-matter expertise. For instance, a quick conversation with the analyst and a view of the data coding scheme turned up this bit of information.

We just happen to know - The variable Performance was not a measured variable. The researchers, on the basis of prior literature, created a summary variable, which is a weighted function of the three variables, RunTime, Age, and Gender. This is not at all an uncommon occurrence and illustrates an important point. If a summary variable is included in a model along with some or all of its composite measures, there is bound to be collinearity. In fact, this can be the source of great problems.

· If the composite variable has meaning, it can be used as a stand-in measure for all three composite scores and you can remove the variables RunTime and Age from the analysis.

A decision was made to remove Performance from the analysis. Another check of collinearity is warranted.

4. 
Reopen the previous task.
5. Remove Performance from the list of explanatory variables by highlighting it and clicking [image: ].
[image: ]

6. Click [image: ] and do not replace the results from the previous run.

[image: ]

[image: ]



The greatest VIF values are much smaller now. The variables Maximum_Pulse and Run_Pulse are also collinear, but for a natural reason. The pulse at the end of a run is highly likely to correlate with the maximum pulse during the run. One might be tempted simply to remove one variable from the model, but the small p-values for each indicate that this would adversely affect the model.
7. Reopen the previous task.
8. Remove Maximum_Pulse from the list of explanatory variables by highlighting it and clicking [image: ].
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9. Click [image: ] and do not replace the results from the previous run.
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With Maximum_Pulse removed, all of the VIF values are low, but the R-Square and Adj R-Sq values were reduced and the p-value for Run-Pulse actually increased!
??Even with collinearity still present in the model, it might be advisable to keep the previous model including Maximum_Pulse.??
Collinearity can have a substantial effect on the outcome of a stepwise procedure for model selection. Because the significance of important variables can be masked by collinearity, the final model might not include very important variables. This is why it is advisable to deal with collinearity before using any automated model selection tool.
	Just FYI - there are other approaches to dealing with collinearity. Two techniques are ridge regression and principle components regression. In addition, re-centering the predictor variables can sometimes eliminate collinearity problems, especially in a polynomial regression and ANCOVA models. 

[bookmark: Slide_309][image: ]
(1) Preliminary Analysis  This step includes the use of descriptive statistics, graphs, and correlation analysis.
(2) Candidate Model Selection  This step uses the numerous selection options in the Linear Regression task to identify one or more candidate models.
(3) Assumption Validation  This step includes the plots of residuals and graphs of the residuals versus the predicted values. It also includes a test for equal variances.
(4) Collinearity and Influential Observation Detection  The former includes the use of the VIF statistic, condition indices, and variation proportions; the latter includes the examination of Rstudent residuals, Cook’s D statistic, and DFFITS statistics.
(5) Model Revision  If steps (3) and (4) indicate the need for model revision, generate a new model by returning to these two steps.
(6) Prediction Testing  If possible, validate the model with data not used to build the model.
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1.    Assessing Collinearity
Using the BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric variables in the file.
a.    Determine whether there is a collinearity problem.
b.    If so, decide what you would like to do about that. Will you remove any variables? Why or why not?
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1.    Examining Residuals
Assess the model obtained from the final forward stepwise selection of predictors for the BodyFat2 data set. Run a regression of PctBodyFat2 on Abdomen, Weight, Wrist, and Forearm. Create plots of the residuals by the four regressors and by the predicted values and a normal quantile-quantile plot.
Invoke the Linear Regression task to test the regression model of PctBodyFat2 against the predictor variables of Abdomen, Weight, Wrist, and Forearm. 
a.    Do the residual plots indicate any problems with the constant variance assumption?
Create a new process flow and rename it Chapter 5 Exercises.
[image: ]
Open the BodyFat2 data set.
Select Analyze  Regression  Linear Regression….
[image: ]
Drag PctBodyFat2 to the dependent variable task role and Abdomen, Weight, Wrist, and Forearm to the explanatory variables task role.
[image: ]
With Plots selected at the left, click the radio button next to Custom list of plots. 
The box next to Diagnostic plots should already be checked. In addition, check the boxes next to Residuals by predicted values plot and Residual plots.
[image: ]
Click [image: ].
[image: ]
[image: ]
It does not appear that the data violate the assumption of constant variance.
b.    Are there any outliers indicated by the evident in any of the residual plots?
There are a few outliers for Wrist and Forearm and one clear outlier in each of Abdomen and Weight.
c.    Does the quantile‑quantile plot indicate any problems with the normality assumption?
[image: ]
The quantile-quantile plot in the center left panel shows that the normality assumption seems to be met.
2.    Generating Potential Outliers
Using the BodyFat2 data set, run a regression model of PctBodyFat2 on Abdomen, Weight, Wrist, and Forearm.
a.    Use plots to identify potential influential observations based on the suggested cutoff values.
Reopen the last task by right-clicking in it in the Project Tree and selecting Modify….
With Plots selected at the left, check the boxes that are checked below in the Custom plots area.
[image: ]
With Predictions selected at the left:
· Check the box for Original sample under Data to predict.
· Check Predictions and Diagnostic statistics under Save output data.
· Check the box for Residuals under Additional statistics.
Click [image: ] and do not replace the results from the previous run.
Right-click the saved task icon in the Project Tree and select Add as Code Template.
[image: ]
Edit the code template in the PROC REG section by adding the option (LABEL) at the end of each PLOTS(ONLY) line and the statement ID CASE; immediately after the next semi-colon.
PROC REG DATA=WORK.SORTTempTableSorted
        PLOTS(ONLY)=RSTUDENTBYPREDICTED(LABEL)
        PLOTS(ONLY)=COOKSD(LABEL)
        PLOTS(ONLY)=DFFITS(LABEL)
        PLOTS(ONLY)=DFBETAS(LABEL)
    ;
    ID CASE;
Click [image: ] above the code window.
[image: ]
There are only a modest number of observations further than 2 standard error units from the mean of 0.
[image: ]
There are 10 labeled outliers, but observation 39 is clearly the most extreme.
[image: ]
The same observations are shown to be influential by the DFFITS statistic.
[image: ]
DFBETAS are particularly high for observation 39 on the parameters for weight and forearm circumference.
3.    Assessing Collinearity
Using the BodyFat2 data set, run a regression of PctBodyFat2 on all the other numeric variables in the file.
a.    Determine whether there is a collinearity problem.
Open the BodyFat2 data set.
Select Analyze  Regression  Linear Regression….
[image: ]
Drag PctBodyFat2 to the dependent variable task role and all other continuous variables shown to the explanatory variables task role.
[image: ]
With Statistics selected at the left, check the box for Variance inflation values in the Diagnostics area.
[image: ]
Click [image: ].


[image: ]



There seems to be high collinearity with Weight and less so with Hip, Abdomen, Chest, 
and Thigh.
b.    If so, decide what you would like to do about that. Will you remove any variables? Why 
or why not?
The answer is not so easy. True, Weight is collinear with some set of the other variables, but 
as you have seen before in your model-building process, Weight actually ends up as a relatively significant predictor in the “best” models.
image3.emf
9

Scatter Plot of Curvilinear Model
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Scatter Plot of Outlier Model
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Scatter Plot of Influential Model

Y = 3.0 + 0.5X

R2 = 0.67
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Verifying Assumptions
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Examining Residual Plots
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Detecting Outliers
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Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: Oxygen_Consumption

Number of Observations Read |31
Number of Observations Used |31
Analysis of Variance
Sumof  Mean
Source DF| Squares Square F Value Pr>F
Model 4 71145087 17786272 33.01 <0001
Error 26 14010368 538860
Corrected Total | 30 85155455
Root MSE 232134/R-Square | 08355
Dependent Mean | 47.37581 Adj R-Sq | 0.8102
Coeff Var 489984
Parameter Estimates
Parameter| Standard
Variable DF| Estimate Error tValue Pr> [t
Intercept 1 9716952 1165703 834 <0001
RunTime 1 277576 034159 813 <0001
Age 1 018303 009433 200 00557
Run_Pulse 1 034568 011820 292 0.0071
Maximum_Pulse | 1 0.27188 0.13438  2.02 0.0534,
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Influential Observations
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Diagnostic Statistics

Four statistics that help identify influential 

observations are



STUDENT residual



Cook’s D



RSTUDENT residual



DFFITS.

21
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Studentized Residual

Studentized residuals (SR) are obtained by dividing 

the residuals by their standard errors.

Suggested cutoffs are as follows:



|SR| > 2 for data sets with a relatively small number 

of observations



|SR| > 3 for data sets with a relatively large number 

of observations

23
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Cook’s D Statistic

Cook’s D statistic is a measure of the simultaneous 

change in the parameter estimates when an observation 

is deleted from the analysis.

A suggested cutoff is             , where n is the sample size. 

If the above condition is true, then the observation might 

have an adverse effect on the analysis.
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Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: Oxygen_Consumption

Number of Observations Read |31
Number of Observations Used |31
Analysis of Variance
Sumof  Mean
Source DF| Squares Square F Value Pr>F
Model 4 71145087 17786272 33.01 <0001
Error 26 14010368 538860
Corrected Total | 30 85155455
Root MSE 232134/R-Square | 08355
Dependent Mean | 47.37581 Adj R-Sq | 0.8102
Coeff Var 489984
Parameter Estimates
Parameter| Standard
Variable DF| Estimate Error tValue Pr> [t
Intercept 1 9716952 1165703 834 <0001
RunTime 1 277576 034159 813 <0001
Age 1 018303 009433 200 00557
Run_Pulse 1 034568 011820 292 0.0071
Maximum_Pulse | 1 0.27188  0.13438  2.02 0.0534
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31

How to Handle Influential Observations

1. Recheck the data to ensure that there are no data 

errors.

2. If the data is valid, one possible explanation is that 

the model is not adequate.

31



A model with higher-order terms, such 

as polynomials and interactions between 

the variables, might be necessary to fit the 

data well.
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Graphical Example of Collinearity
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Graphical Example of Collinearity
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Illustration of Collinearity
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Illustration of Collinearity
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Illustration of Collinearity
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Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: Oxygen_Consumption

Number of Observations Read |31
Number of Observations Used |31

Analysis of Variance

Sumof  Mean
Source DF| Squares Square F Value
Model 7 72266124 10323732 1842
Error 2312889331 560406

Corrected Total | 30| 85155455

Pr>F
<0001

Root MSE 236729 R-Square | 08486
Dependent Mean | 47.37581 Adj R-Sq | 0.8026

Coeff Var 4.99683

Parameter Estimates
Parameter| Standard

Variable DF| Estimate|  Error tValue Pr> It]
Intercept 1 131.78249 7220754 183 0.0810
RunTime 1 386019 293659 -1.31 0.2016
Age 1 046082 058660 -0.79 0.4401
Weight 1 005812 0.068%2 -0.84 0.4078
Run_Pulse 1 036207 012324 2.94 0.0074
Rest_Pulse 1001512 0.06817 -0.22 0.8264
Maximum_Pulse 1 030102 0.13981 215 0.0420
Performance 1 012619 030097 -0.42 0.6789
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Collinearity Diagnostics

The Regression task offers these tools that help quantify 

the magnitude of the collinearity problems and identify 

the subset of Xs that is collinear: 



Variance Inflation Factor (VIF)



Collinearity Analysis



Collinearity Analysis without the Intercept



Tolerance



VIF is the inverse of Tolerance

48
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Variance Inflation Factor (VIF)

The VIF is a relative measure of the increase in the 

variance because of collinearity. It can be thought 

of as the ratio:

A VIF

i

> 10 indicates that collinearity is a problem.

49
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Model
Error

Number of Observations Read |31
Number of Observations Used |31

Analysis of Variance
Sumof  Mean

DF| Squares  Square F Value Pr>F
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Number of Observations Read |31
Number of Observations Used |31

Analysis of Variance

Sumof  Mean
Source DF| Squares Square F Value Pr>F
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The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: PctBodyFat2

Number of Observations Read | 252
Number of Observations Used | 252

Analysis of Variance

Sum of Mean
Source DF|  Squares  Square FValue Pr>F
Model 13 13159 101222506 5450 <0001
Error 238 442006401 1857170
Corrected Total | 251 17579

Root MSE 430949 R-Square | 07486

Dependent Mean | 1915079 Adj R-Sq | 0.7348

Coeff Var 2250293

Parameter Estimates
Parameter| Standard Variance

Variable |DF Estimate| Error tValue Pr> [t]| Inflation
Intercept | 1 -2135323 2218616  -0.96 03368 0
Age 1 006457 003219 201 00450 222447
Weight | 1 009638 006185 -156 0.1205 4465251
Height | 1 00433 017870 -025 08060 293911
Neck 1 047547 023557 202 00447 443192
Chest 1 001718 010322 -0.17 08679 1023469
Abdomen | 1 095500 003016 10.59 <0001 1277553
Hip 1 018853 014479 130 01940 1454193
Thigh 1024835 014617 170 00306 7.95866
Knee 1001395 024775 006 09552 482530
Ankle 1017788 022262 080 04251 192410
Biceps | 1 018230 017250 106 02917 367091
Forearm | 1 045574 019930 229 00231 219193
Wrist 1 165450 053316 -310 0.0021 334840




