This tutorial walks you through features and functions of Tableau Desktop. As you work through this tutorial, you will create three views in a Tableau workbook. The steps you'll take is based on a SAM’s Club data set from the University of Arkansas Enterprise System group in the Information Systems Department.

Dataset Overview:

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Time Frame</th>
<th>Rows</th>
<th>Attributes</th>
<th>Size (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE_INFO</td>
<td>12/15/1982 to 12/31/2049</td>
<td>1,304</td>
<td>34</td>
<td>0.001</td>
</tr>
<tr>
<td>TENDER</td>
<td>1/1/2007 to 4/30/2014</td>
<td>10,226,711,544</td>
<td>6</td>
<td>1.082298</td>
</tr>
<tr>
<td>VISIT</td>
<td>1/1/2007 to 4/30/2014</td>
<td>5,049,399,530</td>
<td>13</td>
<td>526.105</td>
</tr>
</tbody>
</table>

3 TABLES

Platform data is currently available: Yes

This tutorial shows you how to:

1. Connect directly to the WCOB_SAMS_STOREVISITS dataset residing on the TERADATA system.
2. Prepare the dataset before working on it.
3. Create three visualizations based on an investigation of transaction amounts.

NOTE: This tutorial assumes you have been granted access to the University of Arkansas VMWare platform. Requesting access can be done from the Enterprise Systems website at the University of Arkansas (https://walton.uark.edu/enterprise/). The data used should not be downloaded to your personal drives. All files should remain on the Remote Desktop S: drive provided by the University of Arkansas. This is due to our agreement with the data providers. Questions can be directed to Ron Freeze at rfreeze@walton.uark.edu.

ESTIMATED COMPLETION TIME: 20-40 minutes
The Story
Suppose you are an employee for a large retail chain. You have just been hired as an area sales manager and are interested in understanding the total transaction amount spent per visit for your area as well as other areas of the company.

Initially, you are interested in visualizing the total transaction amount value by all different subdivisions in the company. Next, you want to take the insights gained in the first visualization and break it down to a state level. At this point you should know which subdivision and state generated the highest. Likewise, you should have an idea of which states belong to which subdivision. Finally, once you have both the subdivision and state-level visualizations, you want to look at the top 10 zip codes per transaction amount in the state in which you found the highest transaction amount.

In order to reach the desired visualizations, the following are the steps we will follow:

1. **CONNECTING TO THE DATA** ([here](#))
 - Connect to Teradata
 - Connect to WCOB_SAMS_STOREVISITS database
 - Connect to the two tables: VISIT and STORE_INFO.

2. **PREPARING THE DATA** ([here](#))
 - The dataset has a total of 15,276,112,378 records and 53 attributes distributed among three tables:
 - STORE_INFO
 - TENDER
 - VISIT
 - Use hide and filter tools to reach this list of attributes:
 - Store Name
 - Store Type (filter/Tran type = ‘S’)
 - Align Sub Division Nbr
 - City
 - State
 - Zip Code
 - Mdse Major Zone
 - Tot Visit Amnt
 - Visit Date
 - Tot Scan Cnt
 - For further understanding of the attributes listed above, please refer to the [data dictionary](#) appended at the end of the document.

3. **CREATE THE VISUALIZATIONS** ([here](#))
 - A packed bubbles and column chart for transaction amount per Subdivision
 - A geographic view by state
 - A geographic view by top Zip Code of Texas area.
Open Tableau Desktop and begin

This tutorial assumes that you have logged in to University of Arkansas VMWare platform. Select the **Start Windows** icon, look for **Tableau 2019.2** and click on it. Wait 10 seconds until the application opens. If an update Tableau window pops up, exit this window.

The first thing you see after you open Tableau Desktop is the **start PAGE**. Here, you select the connection that you want to use - how you will connect to your data.

The start page gives you several options to choose from:

a. Click the Tableau icon in the upper left-hand corner of any page to visit the start page at any time.

b. Under **Connect**, you can:
 - Connect to data that is stored in a file, such as Microsoft Excel or Access.
 - Connect to data that is stored on a server, such as Tableau Server, Microsoft SQL Server, or Google Analytics.
 - Connect to a data source that you’ve connected to before.

*Tableau supports the ability to connect to a wide variety of data stored in a wide variety of places. The **Connect** pane lists the most common places that you might want to connect to, or click the **More...** link to see more options. More on connecting to data sources in the Learning Library (in the top menu).*

c. Under **Open**, you can open workbooks that you have already created.

d. Under **Sample Workbooks**, view sample dashboards and worksheets that come with Tableau Desktop.

e. Under **Discover**, find additional resources like video tutorials, forums, or the “Viz of the week” to get ideas about what you can build.
Connect to Teradata
Under Connect > To a Server, select More. A new window will open, click on Teradata as shown in the figure alongside.

A window will ask you to enter the following information:
Server: 130.184.26.161
Username: given to you by instructor
Password: given to you by instructor

Connect to WCOB_SAMS_STOREVISITS
Now we have to access the WCOB_SAMS_STOREVISITS database through the panel to the left:

1. Type “WCOB_SAMS_STOREVISITS”, click on the search icon. A new “WCOB_SAMS_STOREVISITS” will appear below, click on it.
2. Once on the database, click on the search icon.
3. Finally, tables from the database should appear on the panel to the left.

Your window should look like the picture on the right. You are connected to WCOB_SAMS_STOREVISITS database (circled in red). The left panel shows the tables (circled in green) in the database.

At the bottom left corner, there are two tabs named Data Source and Sheet 1. Click on Sheet 1 and a window similar to the picture below will appear.

Sheet 1 does not currently have data. This is indicated by an exclamation point next to the
database name (circled in red).
Click on the Data Source tab on the bottom left corner. This will take you to the previous window where you connected to the Database and displayed the tables.

Connect to VISIT table

On the Data Source window:

4. Drag and drop the VISIT table on the left panel to the blank space at the top where is says “Drag tables here”.

5. Click on Update Now (circled in red) and Tableau will fill the columns with data.

6. Click on Sheet 1.
You will now note that you can see the table attributes assigned to Dimensions and Measures.

As a recap:

After you connect to your data, Tableau does the following:

- Opens a new worksheet. This is a blank slate where you create your first view.
- Automatically assigns data types (such as date, number, string, etc.) and roles (dimension or measures) to your data. (We'll talk more about these terms later.)
- Adds columns from your data source to the Data pane on the left-hand side. Columns are added as fields.

If you want to review details of your data, you can select the Data Source tab in the bottom left-hand corner. Here, you can view the first 1,000 rows of your data. What happens in Tableau stays in Tableau; the data is safe.

When you connect to your own data, you might need to do some prep work before connecting to it in Tableau. This is because Tableau makes assumptions about your data so that it can display it properly. With the VISIT table added, we have the first three variables needed for our analysis: Tot Visit Amnt, Visit Date, and Tot Scan Cnt.

Note: If you navigated to Data Source to check out the details, just click on the tab for Sheet 1 to get back to where you started.
Add the STORE_INFO table

To obtain the variables for the remainder of the analysis, we need to add and connect the STORE_INFO table to the VISIT table. The connection is possible since both tables share a single variable attribute: Store NBR.

7. Return to the Data Source page.

8. Drag and drop STORE_INFO to the blank space like you did with VISIT.

9. The two intersecting circles (circled in green) mean that they were successfully connected. This is considered an inner join.

Right click on the join symbol. The popup shows all the different joins Tableau allows you to do. Here VISIT table is taken as ‘Data Source’ inner joining STORE_INFO table. Both have Store NBR as the common attribute joined by an equal sign (circled in red).

10. Click on the Update Now button and you should see your attributes listed.

Now we have the attributes from both the VISIT table and the STORE_INFO table.

Preparing the Data

Hide Unneeded Fields

To get the list of attributes stated in The Story, we need to hide the ones we don’t need:

11. Click the down arrow at the top right corner of each attribute not needed in the analysis.

12. Click on Hide and the attribute will no longer appear in the data.

To undo this, click the ‘Show hidden fields’ box at the far right of the window and manually unhide the attribute.
After hiding all the unnecessary attributes and keeping only the ones mentioned (Store Name, Store Type, Align Sub Division Nbr, City, State, Zip Code, Mdse Major Zone, Tot Visit Amnt, Visit Date, Tot Scan Cnt) your screen should look like the following:

One more tool that can help you visualize your data before working with it is to order your data in ascending or descending order. For instance:

13. Click on the bar figure next to the name of the attribute (circled in red) and this will organize your column. The two figures below show how to do this.
Filter Fields

Due to the size of the VISIT table (5 billion records), we need to reduce our focus in order to display the results more efficiently.

On the picture above, at the top right corner, you can find a Filters subtitle:

14. Click on Add. A new window will open, click on Add.. again.
15. You are now in the ‘Add Filter’ window. Click on Store Type and then click OK. A window will ‘Filter [Store Type]’ will pop-up stating the five different values present in that field.
16. Click on the S box (circled in red) to only work with Store Type = S and click OK. The data now is updated for only Store Type = S.

We have finished organizing our data:
17. Click on Sheet 1, your window should look like the picture below:
Create the Visualizations

Transaction Amounts per Subdivision

Create a visualization of packed bubbles for the total transaction amount per Subdivision in the United States.

The following are the parameters you want for the exploration of the transaction value in your packed bubbles.

- Sum of Total transaction amount (Measure: Tot Visit Amt).
- For the year 2014.
- Show each Subdivision with separate colors (Dimension: Align Sub Division Nbr).
- Properly format the packed bubbles' labels.

The parameters help set which dimensions and measures you are interested in using. Tableau will assume certain things for you as you create your visualization.

1. Start by dragging and dropping the Tot Visit Amt measure and the Align Sub Division Nbr dimension to the blank space under the Mark palette.
Since we only want the transaction amounts for the year 2014, we need to drag and drop the Visit Date dimension to the Filters cell. A Filter [] pop-up will appear to select what is to be filtered.

2. Drag Visit Date to Filters.

3. Select Years in Filter Field (highlighted in blue) and click Next.

4. You will notice that you have multiple years to choose from. Select 2014, Click OK.

At this point, we want to create the packed bubbles and show the difference in Subdivisions by colors.

5. Click on the drop-down menu next to SUM (Tot Visit Amt) and click on Size.

6. Then, select the drop down menu under Marks and select Circle.

7. Finally, click on the drop down menu next to Align Sub Division Nbr and click on Color.

Your screen should now look like this:
At this point, we have our visualization but need to adjust the Title and the labels to show the values for each bubble:

8. To adjust the Title, double click on the Sheet 1 tab at the bottom

9. Rename Sheet 1 to Total transaction amount per Subdivision in 2014.

10. Hit enter to complete.

11. To adjust the labels, click on the Label box under Marks. Click on Show mark labels and then adjust the font as shown in the picture alongside.

12. To adjust the visualization’s width before looking at it in the presentation mode, click on the drop-down menu that says Standard and change it to Entire View (circled in red). This will center your visualization.

13. Finally, to view your final product, click on Presentation Mode (F7) on the top tool bar (circled in red).

Your visualization should look similar to the following visualization:

You note that Subdivision “A” (blue circle) reached the highest aggregate transaction amount in 2014. Alternatively, you might want to compare this insight in a column chart in an x-axis and y-axis instead of bubbles. To do this, do the following:
14. Drag **Tot Visit Amt** and drop it in **Rows**.
15. Drag **Align Sub Division Nbr** and drop it in **Columns**.
16. Right under **Marks** palette, click on the drop-down menu and select **Bar**.
17. Finally, click on the box to the left of **SUM (Tot Visit Amt)** under the **Marks** palette section and click on **Label**.

Your visualization should look similar to the visualization alongside:
Geographic View by State

Now you would like to see a comparison by state in terms of total transaction amount in 2014. We will need to create a new visualization.

1. Click on the tab to the right of your Total transaction amount by Subdivision in 2014 tab to create a New Worksheet.
2. Tableau creates a new Sheet 2.
3. Double click on Sheet 2 and rename it to 2014 Total Transaction Amount by State.

Tableau allows multiple ways to create visualizations. For each Dimension and Measure, you can double click on your selected variables and allow Tableau to place and create your visualization.

4. Double click on Tot Visit Amt, and Double click on State.
5. Filter Visit Date to 2014 as we did above.

Tableau automatically created a column chart and our filter shows Texas as the highest total transaction amount. However, we are interested in a geographic visualization to show each state. To do this, we need to change the visualization to a geographic representation.

6. Right Click on State under Dimensions and look for Geographic Role and then click on State/Province. (Path shown in figure alongside).
7. Now, locate Show Me at the top right of the page and select the indicated visualization.
8. Go to Presentation Mode (F7).

Move the mouse over Texas and you will note that is consistent with the indication in the Legend that the highest total transaction amount is $59.9 Billion.
Nevertheless, we are interested in knowing what state belongs to which Sub Division and what state within a subdivision has the highest total transaction amount for the year 2014. To visualize this, do the following:

9. Exit the presentation mode, drag **Align Sub Division Nbr** and drop it under the **Marks** palette.

10. Change the **SUM (Tot Visit Amt)** to **Size** and **Align Sub Division Nbr** to **Color** in the Marks palette section like shown alongside.

11. Drag **Visit Date** to **Filters** and choose the year 2014 as you did above. Do the same for **State** and deselect the states of **AK** (Alaska), **HI** (Hawaii), and **PR** (Puerto Rico). Click Ok.

12. Adjust the size of the circles and go to presentation Mode (F7).

You can now better visualize the environment and tell your boss what states belong to which Subdivision and which state is leading in their respective Subdivision.

Note that some states have two circles of different colors within. This might require you to come up with an explanation or look more in depth in the data to answer the questions of why this happens and does this affect the results we found above?
Texas State view by Top Zip Code

Now we are ready to drill down to the area of responsibility by zip code.

1. Right Click on the tab of the current worksheet with title **2014 Total Transaction Amount by State** and click on **Duplicate**. You just duplicated the current worksheet you were working on.

2. Name this new worksheet **Texas 2014 Transaction Amount for Top Zip codes**.

Since we duplicated our previous worksheet, we don’t need to recreate a new geographic map. We now work on top of what we previously did:

3. Filter **State** and click on **None**. Then, look for **TX** (Texas) and click on the box. Click OK.

4. Drag **Zip Code** from Measure and drop it in the **Marks** palette.

5. Remove **Align Sub Division Nbr** from the **Marks** palette and change **SUM(Tot Visit Amt)** to **Colors**.

6. Go to presentation Mode (F7).

Tableau automatically created a visualization where you can see each zip code in terms of surface and no longer circles.
Now we want to filter our Transaction Amount to be greater than 50 Million by Zip Code and show to which cities those zip codes belong. To do this, do the following:

7. Drag **Tot Visit Amt** in Dimensions to the **Filters** palette. Click on **Sum**, and then set the range of values from **50,000,000** to the maximum.

8. Drag **City** from Measure and drop it in the **Marks** palette.

9. Under the **Marks** palette, change **Zip Code** to **Size**. Adjust the size of the circles.

10. Right under the title on the figure, you will see a **tool menu** with different options like to zoom-in and zoom-out. Click on the arrow and then click on the **dotted square icon**.

11. With your mouse, draw a square including all the points in the map. This will highlight all the circles.

12. Right click on any circle. Click on **Annotate** and then click on **Mark**....

An **Edit Annotation** window will appear for you to adjust how you want your marks to look like. If you just click Ok, you will have the following visualization:
Now on your own and to finish practicing, manage to change the format of all the annotations you just created by right clicking on any of them and then choosing **Format**.

Hint: If you select all the annotations at the same time (Top menu under Format tab → Annotations…) you will be able to change the format of all of them at once.

After doing so, you might want to have a visualization that looks like the following to present to your boss:

![Map of Texas with transaction amounts](image)

What is your opinion about the highest transaction amount registered in a city and zip code that shares border with Mexico? This could be an important insight to present to your boss.
Data Dictionary

STORE_INFO Table

<table>
<thead>
<tr>
<th>Column/Field Name</th>
<th>Key Type</th>
<th>Datatype</th>
<th>Short Description</th>
<th>Long Description</th>
<th>Sample Values Or Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION_NBR</td>
<td>BYTEINT</td>
<td></td>
<td>Division Number</td>
<td>Number 18 denotes Sam’s Club</td>
<td>18 ONLY</td>
</tr>
<tr>
<td>STORE_NBR</td>
<td>PK</td>
<td>INTEGER</td>
<td>Store Number</td>
<td>Any 4-digit number</td>
<td>6,670</td>
</tr>
<tr>
<td>STORE_NAME</td>
<td>CHAR</td>
<td></td>
<td>Store Name</td>
<td>Name given to store</td>
<td>SEARCYSAMS DC</td>
</tr>
<tr>
<td>ALIGN_SUB_DIVISION_NBR</td>
<td>CHAR</td>
<td></td>
<td>Subdivision Number</td>
<td>Denotes subdivision</td>
<td>A thru Z</td>
</tr>
<tr>
<td>REGION_NBR</td>
<td>SMALLINT</td>
<td></td>
<td>Region Number</td>
<td>Number assigned to region</td>
<td>0 thru 99</td>
</tr>
<tr>
<td>DISTRICT_NBR</td>
<td>SMALLINT</td>
<td></td>
<td>District Number</td>
<td>Number assigned to district</td>
<td>0 thru 998</td>
</tr>
<tr>
<td>SIZE_SQFT</td>
<td>INTEGER</td>
<td></td>
<td>Store Size</td>
<td>Store size in square feet</td>
<td>144,601</td>
</tr>
<tr>
<td>OPEN_DATE</td>
<td>DATE</td>
<td></td>
<td>Opening Date</td>
<td>Date store opened</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>OPEN_STATUS</td>
<td>CHAR</td>
<td></td>
<td>Open Status</td>
<td>Denotes operating hours</td>
<td>0 thru 7</td>
</tr>
<tr>
<td>EXPANSION_SIZE_SQFT</td>
<td>INTEGER</td>
<td></td>
<td>Expansion size</td>
<td>Size of expansion in square feet, if applicable</td>
<td>130,595</td>
</tr>
<tr>
<td>EXPANSION_OPEN_DATE</td>
<td>DATE</td>
<td></td>
<td>Expansion Opening Date</td>
<td>Date expansion opened, if applicable</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>DRY_RUN_DATE</td>
<td>DATE</td>
<td></td>
<td>"Dry Run" Date</td>
<td>Date store began normal operations, usually the day before grand opening</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>STORE_TYPE</td>
<td>CHAR</td>
<td></td>
<td>Store Type</td>
<td>Denotes if store is a regular Sam’s, Distribution Center, etc.</td>
<td>G, W, S, R</td>
</tr>
<tr>
<td>STREET_ADDR</td>
<td>CHAR</td>
<td></td>
<td>Street Address</td>
<td>1st line of mailing address</td>
<td>280 WALMART RD</td>
</tr>
<tr>
<td>CITY</td>
<td>CHAR</td>
<td></td>
<td>City</td>
<td>City of mailing address</td>
<td>YPSILANTI, TUPELO</td>
</tr>
<tr>
<td>STATE</td>
<td>CHAR</td>
<td></td>
<td>State</td>
<td>State of mailing address</td>
<td>AR, WA</td>
</tr>
<tr>
<td>ZIP_CODE</td>
<td>INTEGER</td>
<td></td>
<td>ZIP code</td>
<td>ZIP code of mailing address</td>
<td>72,716</td>
</tr>
<tr>
<td>PHONE_NBR</td>
<td>CHAR</td>
<td></td>
<td>Phone number</td>
<td>Phone number for store</td>
<td>007149656666G</td>
</tr>
<tr>
<td>MANAGER_NAME</td>
<td>VARCHAR</td>
<td></td>
<td>Store Manager Name</td>
<td>First three letters of manager’s first name</td>
<td>JEF, LIS</td>
</tr>
<tr>
<td>OPEN_SUNDAY_FLAG</td>
<td>CHAR</td>
<td></td>
<td>Open Sunday Flag</td>
<td>Denotes if store is open on Sundays</td>
<td>Y or N ONLY</td>
</tr>
<tr>
<td>"_WHSE"</td>
<td>CHAR</td>
<td></td>
<td>Warehouse Information</td>
<td></td>
<td>null</td>
</tr>
<tr>
<td>GEOGRAPHIC_ZONE</td>
<td>DECIMAL</td>
<td></td>
<td>Geographic zone</td>
<td>Zone as determined by Sam’s Club</td>
<td>0 thru 8</td>
</tr>
</tbody>
</table>
VISIT Table

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Key Type</th>
<th>Datatype</th>
<th>Short Description</th>
<th>Long Description</th>
<th>Sample Values or Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE_NBR</td>
<td>PK, FK for STORE_INFO</td>
<td>INTEGER</td>
<td>Store Number</td>
<td>Store Number</td>
<td>6,620</td>
</tr>
<tr>
<td>VISIT_NBR</td>
<td>PK</td>
<td>INTEGER</td>
<td>Visit Number</td>
<td>Sequential visit number</td>
<td>301,303,484</td>
</tr>
<tr>
<td>REGISTER_NBR</td>
<td></td>
<td>SMALLINT</td>
<td>Register Number</td>
<td>Number of register</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL_TAX_AMOUNT</td>
<td></td>
<td>DECIMAL</td>
<td>Total Tax Amount</td>
<td>Amount of tax</td>
<td>7.27</td>
</tr>
<tr>
<td>TOT_VISIT_AMT</td>
<td></td>
<td>DECIMAL</td>
<td>Total Visit Amount</td>
<td>Transaction total</td>
<td>27.49</td>
</tr>
<tr>
<td>VISIT_DATE</td>
<td>DATE</td>
<td></td>
<td>Visit Date</td>
<td>Date of visit</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>VISIT_TIME</td>
<td>SMALLINT</td>
<td></td>
<td>Visit Time</td>
<td>Time of visit</td>
<td>Given in 24-hour time</td>
</tr>
<tr>
<td>NEW_RFND_PROC_IND</td>
<td>BYTEINT</td>
<td></td>
<td>New Refund Procedure Indication</td>
<td>Indicates if new refund procedure used</td>
<td>0 or 1</td>
</tr>
<tr>
<td>RFND_NO_RECP_IND</td>
<td>BYTEINT</td>
<td></td>
<td>Refund No Receipt Indication</td>
<td>Denotes if refund performed without an original receipt</td>
<td>0 or 1</td>
</tr>
<tr>
<td>REFUND_RECEPT_IND</td>
<td>BYTEINT</td>
<td></td>
<td>Refund Receipt Indication</td>
<td>Denotes if receipt given for refund transaction</td>
<td>0 or 1</td>
</tr>
<tr>
<td>TOT_UNIQUE_ITEM_CNT</td>
<td>SMALLINT</td>
<td></td>
<td>Total Unique Item Count</td>
<td>Number of unique items in transaction</td>
<td>1, 14, 27</td>
</tr>
<tr>
<td>TOT_SCAN_CNT</td>
<td>SMALLINT</td>
<td></td>
<td>Total Scan Count</td>
<td>Number of items scanned</td>
<td>1, 14, 27</td>
</tr>
<tr>
<td>OPERATOR_NBR</td>
<td>SMALLINT</td>
<td></td>
<td>Operator Number</td>
<td>Employee who conducted transaction</td>
<td>52, 2530</td>
</tr>
</tbody>
</table>
TENDER Table

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Key Type</th>
<th>Datatype</th>
<th>Short Description</th>
<th>Long Description</th>
<th>Sample Values or Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE_NBR</td>
<td>PK, FK for VISIT, FK for STORE_INFO</td>
<td>INTEGER</td>
<td>Store Number</td>
<td>Number of store</td>
<td>6,605</td>
</tr>
<tr>
<td>VISIT_NBR</td>
<td>PK, FK for VISIT</td>
<td>INTEGER</td>
<td>Visit Number</td>
<td>Sequential visit number</td>
<td>104,605,375</td>
</tr>
<tr>
<td>VISIT_DATE</td>
<td>DATE</td>
<td></td>
<td>Visit Date</td>
<td>Date of visit</td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>TENDER_TYPE</td>
<td>BYTEINT</td>
<td></td>
<td>Tender Type</td>
<td>Payment Method</td>
<td>0 thru 99</td>
</tr>
<tr>
<td>TENDER_AMT</td>
<td>DECIMAL</td>
<td></td>
<td>Tender Amount</td>
<td>Amount tendered</td>
<td>46.85, 103.73</td>
</tr>
<tr>
<td>CASH_BACK_AMT</td>
<td>DECIMAL</td>
<td></td>
<td>Cashback Amount</td>
<td>Amount given as cashback</td>
<td>0.00, 60.00</td>
</tr>
</tbody>
</table>