
Contents

Preface .i
How this course is organized .i
How each topic is organized . ii

Part 1. System programming on z/OS

Chapter 1. Overview of system programming . 7
1.1 The role of the system programmer . 8
1.2 What is meant by separation of duties . 9
1.3 Customizing the system . 10

1.3.1 z/OS system libraries . 12
1.3.2 SYS1.PARMLIB . 12
1.3.3 Link pack area (LPA). 13
1.3.4 Pageable link pack area (PLPA) . 13
1.3.5 Fixed link pack area (FLPA) . 14
1.3.6 Modified link pack area (MLPA) . 15
1.3.7 SYS1.PROCLIB . 15
1.3.8 The master scheduler subsystem . 15
1.3.9 A job procedure library . 17
1.3.10 Search order for programs . 18
1.3.11 What system symbols are . 19

1.4 Managing system performance . 21
1.5 Configuring I/O devices . 22
1.6 Following a process of change control . 23

1.6.1 Risk assessment . 24
1.6.2 Change control record system . 24
1.6.3 Production control . 25

1.7 Configuring consoles. 26
1.8 Using SMP/E to manage changes . 29
1.9 Initializing the system . 31

1.9.1 Initialization process . 32
1.9.2 IPL types . 37
1.9.3 Shutting down the system . 38

1.10 Summary . 39

Chapter 2. Using SMP/E . 41
2.1 What is SMP/E? . 42
2.2 The SMP/E view of the system . 42
2.3 Changing system elements . 44
© Copyright IBM Corp. 2005, 2006. All rights reserved. 1

2.4 Introducing an element into the system. 44
2.5 Preventing problems with an element . 46
2.6 Fixing problems with an element. 47
2.7 Customizing an element - USERMOD SYSMOD 48

2.7.1 Prerequisites and corequisites . 49
2.8 Tracking and controlling elements. 50
2.9 Working with SMP/E . 50

2.9.1 SMP/E basic commands . 51
2.10 When is SMP/E used? . 62
2.11 Why is SMP/E used?. 63
2.12 Terminology. 63

2.12.1 Communicating with IBM Defect Support . 63
2.12.2 Consolidate Software Inventory (CSI) and zones 64
2.12.3 Maintenance . 65

2.13 Local SMP/E Environments. 67
2.13.1 Production, Test and Emergency Fix . 67
2.13.2 Base z/OS and Product CSIs . 68

2.14 How to use SMP/E . 68
2.14.1 SYSMOD. 68
2.14.2 JCL . 69
2.14.3 RECEIVE Command. 69
2.14.4 APPLY Command . 69
2.14.5 ACCEPT Command . 70
2.14.6 LIST Command . 70

2.15 ISPF . 70
2.16 Order and download IBM fixes . 74
2.17 Summary . 74

Chapter 3. Hardware systems and LPARs . 77
3.1 Overview of mainframe hardware systems . 78
3.2 Early system design . 79
3.3 Current design. 81

3.3.1 I/O connectivity . 82
3.3.2 System control and partitioning. 84
3.3.3 Characteristics of LPARs . 86
3.3.4 Consolidation of mainframes. 87

3.4 Processing units . 88
3.5 Multiprocessors . 89
3.6 Disk devices . 90
3.7 Clustering . 92

3.7.1 Basic shared DASD . 92
3.7.2 CTC rings . 94
3.7.3 Parallel sysplex . 95
2 z/OS Basics

3.8 Typical mainframe systems. 97
3.8.1 Very small systems . 97
3.8.2 Medium single systems. 98
3.8.3 Larger systems . 99

3.9 Summary . 101

Chapter 4. Parallel Sysplex and continuous availability. 103
4.1 Future of the new mainframe . 104
4.2 What a Parallel Sysplex is. 104

4.2.1 Shared data clustering . 105
4.2.2 Non-disruptive maintenance . 106

4.3 Continuous availability of mainframes. 106
4.3.1 No single points of failure . 107
4.3.2 Capacity and scaling . 108
4.3.3 Dynamic workload balancing . 108
4.3.4 Ease of use . 109
4.3.5 Single system image . 111
4.3.6 Compatible change and non-disruptive growth. 112
4.3.7 Application compatibility . 112
4.3.8 Disaster recovery . 113

4.4 Summary . 113
 Contents 3

4 z/OS Basics

Preface

This course provides students of information systems technology with the background
knowledge and skills necessary to begin using the basic facilities of a mainframe
computer.

For optimal learning, students are assumed to have successfully completed an
introductory course in computer system concepts, such as computer organization and
architecture, operating systems, data management, or data communications. They should
also have successfully completed courses in one or more programming languages, and be
PC literate.

Note that this course can also be used as a prerequisite for courses in advanced topics
such as compiler algorithms, or for internships and special studies.

Others who will benefit from this course include data processing professionals who have
experience with non-mainframe platforms, or who are familiar with some aspects of the
mainframe but want to become knowledgeable with other facilities and benefits of the
mainframe environment.

When moving through this course, instructors are encouraged to alternate between
course, lecture, discussions, and hands-on exercises. The instructor-led discussions and
hands-on exercises are an integral part of the learning experience, and can include topics
not covered in this course.

After completing this course, students will have received:

� A general introduction to mainframe concepts, usage, and architecture
� A comprehensive overview of z/OS, a widely used mainframe operating system
� An understanding of mainframe workloads and an overview of the major middleware

applications in use on mainframes today
� The basis for subsequent course work in more advanced, specialized areas of z/OS,

such as system administration or application programming

How this course is organized
This course is organized in four parts, as follows:

� Part 1. “Introduction to z/OS and the mainframe environment” provides an
overview of the types of workloads commonly processed on the mainframe, such as
batch jobs and online transactions. This part of the course helps students explore the
© Copyright IBM Corp. 2005, 2006. All rights reserved. i

user interfaces of z/OS, a widely used mainframe operating system. Discussion topics
include TSO/E and ISPF, UNIX interfaces, job control language, file structures, and
job entry subsystems. Special attention is paid to the users of mainframes and to the
evolving role of mainframes in today’s business world.

� Part 2. “Application programming on z/OS” introduces the tools and utilities for
developing a simple program to run on z/OS. This part of the course guides the
student through the process of application design, choosing a programming language,
and using a runtime environment.

� Part 3. “Online workloads for z/OS” examines the major categories of interactive
workloads processed by z/OS, such as transaction processing, database management,
and Web-serving. This part of the course includes discussions of several popular
middleware products, including DB2®, CICS®, and WebSphere® Application
Server.

� Part 4. “System programming on z/OS” provides topics to help the student become
familiar with the role of the z/OS system programmer. This part of the course
includes discussions of system libraries, starting and stopping the system, security,
network communications and the clustering of multiple systems. Also provided is an
overview of mainframe hardware systems, including processors and I/O devices.

In this course, we use simplified examples and focus mainly on basic system functions.
Hands-on exercises are provided throughout the course to help students explore the
mainframe style of computing. Exercises include entering work into the system, checking
its status, and examining the output of submitted jobs.

How each topic is organized
Each topic follows a common format:

� Objectives for the student
� Topics that teach a central theme related to mainframe computing
� Summary of the main ideas of the topic
� A list of key terms introduced in the topic
� Questions for review to help students verify their understanding of the material
� Topics for further discussion to encourage students to explore issues that extend

beyond the topic objectives
� Hands-on exercises intended to help students reinforce their understanding of the

material
ii z/OS Basics

 Preface iii

http://www.developer.ibm.com/university/scholars/

iv z/OS Basics

Part 1 System programming on
z/OS

In this part we reveal the inner workings of z/OS with discussions of system libraries,
change management, and procedures for starting (IPLing) and stopping a z/OS system.
This part also includes chapters on hardware details and virtualization, and the clustering
of multiple z/OS systems in a sysplex.
© Copyright IBM Corp. 2005, 2006. All rights reserved. 5

6 z/OS Basics

Chapter 1. Overview of system
programming

1

Objective: As a z/OS system programmer, you need to know how to start the system
and how to bring it down again. You must also understand the role of z/OS system
libraries, such as PARMLIB and linklist, and how these libraries affect the processing
of z/OS. Also important is a familiarity with SMP/E, the z/OS utility that helps you
coordinate changes to the system software.

After completing this topic, you will be able to:
� List the major responsibilities of a z/OS system programmer
� Discuss the system libraries, their use, and methods for managing their content
� Explain how proper installation and maintenance are the basis for high availability

in the z/OS environment.
� Describe the process of IPLing a system.
© Copyright IBM Corp. 2005, 2006. All rights reserved. 7

1.1 The role of the system programmer
The system programmer is responsible for managing the mainframe hardware
configuration, and installing, customizing, and maintaining the mainframe operating
system. Installations need to ensure that their system and its services are available and
operating to meet service level agreements. Installations with 24-hour, 7-day operations
need to plan for minimal disruption of their operation activities.

In this topic, we examine several areas of interest for the would-be z/OS system
programmer. While this course cannot cover every aspect of system programming, it’s
important to learn that the job of the z/OS system programmer is very complex and
requires skills in many aspects of the system, such as:
� Device I/O configurations
� Processor configurations
� Console definitions
� System libraries where the software is placed
� System data sets and their placement
� Customization parameters that are used to define your z/OS configuration
� Installation and maintenance using SMP/E.
� Security administration

As shown in Figure 1-1 on page 9, the role of system programmer usually includes some
degree of involvement in all of the following aspects of system operation:
� “Customizing the system” on page 10
� “Managing system performance” on page 21
� “Configuring I/O devices” on page 22
� “Following a process of change control” on page 23
� “Configuring consoles” on page 26
� “Initializing the system” on page 31

We discuss mainframe hardware configurations in Chapter 3, “Hardware systems and
LPARs” on page 77.
8 z/OS Basics

Figure 1-1 Some areas in which the system programmer is involved

1.2 What is meant by separation of duties
In a large z/OS installation, there is usually a “separation of duties” both among members
of the system programming staff, and between the system programming department and
other departments in the IT organization.

A typical z/OS installation includes the following roles and more:
� z/OS system programmer
� CICS system programmer
� Database system programmer
� Database administrator

System performance
and workload
management

z/OS new features
implementation and z/OS system

maintenance

Controlling operating
 activities and functions

System
parameters
and system

libraries
management

SYSTEM PROGRAMMING
Security, Availability

and Integrity

Hardware I/O
configuration

iodfxxiodfxx
 Chapter 1. Overview of system programming 9

� Network system programmer
� Automation specialist
� Security manager
� Hardware management
� Production control analyst
� System operator
� Network operator
� Security administrator
� Service manager

In part, the separation is an audit requirement—ensuring that one person does not have
too much power on a system.

When a new application is to be added to a system, for example, a number of tasks need
to be performed before the application can be used by end users. A production control
analyst is needed to add batch applications into the batch scheduling package, add the
new procedures to a procedure library, and set up the operational procedures. The system
programmer is needed to perform tasks concerned with the system itself, such as setting
up security privileges and adding programs to system libraries. The programmer is also
involved with setting up any automation for the new application.

On a test system, however, a single person might have to perform all the roles, including
being the operator, and this is often the best way to learn how everything works.

1.3 Customizing the system
This section describes the following topics:
� System libraries where the software is located
� System data sets and their placement
� I/O device configuration
� Console definitions
� Customization parameters used to define the z/OS configuration
� z/OS implementation and maintenance

As can be seen in Figure 1-2 on page 11, different types of data exist in a system. First
there is the z/OS software as supplied by IBM. This is usually installed to a series of disk
volumes known as the system residence volumes (SYSRES).

Much of the flexibility of z/OS is built on these SYSRES sets. They make it possible to
apply maintenance to a new set that is cloned from the production set while the current
set is running production work. A short outage can then be taken to IPL from the new
set—and the maintenance has been implemented! Also, the change can be backed out by
IPLing from the old set.
10 z/OS Basics

Fixes to z/OS are managed with a product called System Management Program/Extended
(SMP/E). Indirect cataloging using system symbols is used so that a particular library is
cataloged as being on, for example, SYSRES volume 2, and the name of that volume is
resolved by the system at IPL time from the system symbols. Symbols are discussed in
1.3.11, “What system symbols are” on page 19.

Figure 1-2 Types of data

Another group of volumes are the non-z/OS and non-IBM software volumes. These may
be combined into one group. The majority of non-z/OS software is not usually on the
SYSRES volumes, as the SYSRES sets are usually managed as one entity by SMP/E.
The other software is usually managed separately. These volumes do not form part of the
SYSRES sets, and therefore there is only one copy of each library. As many volumes as
required can be added to this group, each with an individual disk name.

Customization data refers to system libraries such as SYS1.PARMLIB,
SYS1.PROCLIB, plus the master catalog, the IODF, page data sets, JES spools, and other
items essential to the running of the system. It is also where SMP/E data is stored to
manage the software. These data sets are not always located on separate DASD volumes
from IBM-supplied z/OS software; some installations place the PARMLIB and

z/OS software

Non-IBM software

Non-z/OS (CICS, DB2)

Customization data

User-defined exits

User data

Mainframe
 Chapter 1. Overview of system programming 11

PROCLIB on the first SYSRES pack, others place them on the master catalog pack or
elsewhere. This is a matter of choice and is dependent on how the SYSRES volumes are
managed. Each installation will have a preferred method. On many systems, some of the
IBM-supplied defaults are not appropriate so they need to be modified. User exits and
user modifications (usermods) are made to IBM code so that it will behave as the
installation requires. The modifications are usually managed using SMP/E.

Finally, there is user data, which is usually the largest pool of disk volumes. This is not
part of the system libraries, but is presented here for completeness. It contains
production, test and user data. It is often split into pools and managed by System
Managed Storage (SMS), which can target data to appropriately managed volumes. For
example, production data can be placed on volumes which are backed up daily, whereas
user data may only be captured weekly and may be migrated to tape after a short period
of inactivity to free up the disk volumes for further data.

1.3.1 z/OS system libraries
z/OS has many standard system libraries, such as: SYS1.PARMLIB, SYS1.LINKLIB,
SYS1.LPALIB, SYS1.PROCLIB, and SYS1.NUCLEUS. Some of these are related to
IPL processing, while others are related to the search order of invoked programs or to
system security, as described here:
� SYS1.PARMLIB contains control parameters for the whole system.
� SYS1.LINKLIB has many execution modules of the system.
� SYS1.LPALIB contains the system execution modules that are loaded into the link

pack area when the system initializes.
� SYS1.PROCLIB contains JCL procedures distributed with z/OS.
� SYS1.NUCLEUS has the basic supervisor modules of the system.

1.3.2 SYS1.PARMLIB
SYS1.PARMLIB is a required partitioned data set that contains IBM-supplied and
installation-created members. It must reside on a direct access volume, which can be the
system residence volume. PARMLIB is an important data set in a z/OS operating system,
and can be thought of as performing a function similar to /etc on a UNIX system.

The purpose of the PARMLIB is to provide many initialization parameters in a
pre-specified form in a single data set, and thus minimize the need for the operator to
enter parameters.

All parameters and members of the SYS1.PARMLIB data set are described in z/OS MVS
Initialization and Tuning Reference, SA22-7592. Some of the most important PARMLIB
members are discussed in this section.
12 z/OS Basics

1.3.3 Link pack area (LPA)
The link pack area (LPA) is a section of the common area of an address space. It exists
below the system queue area (SQA) and consists of the pageable link pack area (PLPA),
then the fixed link pack area (FLPA), if one exists, and finally the modified link pack area
(MLPA).

Link pack area (LPA) modules are loaded in common storage, shared by all address
spaces in the system. Because these modules are reentrant and are not self-modifying,
each can be used by a number of tasks in any number of address spaces at the same time.
Modules found in LPA do not need to be brought into virtual storage because they are
already in virtual storage.

Modules placed anywhere in the LPA are always in virtual storage, and modules placed
in FLPA are also always in central storage. LPA modules must be referenced very often
in order to prevent their pages from being stolen. When a page in LPA (other than in
FLPA) is not continually referenced by multiple address spaces, it tends to be stolen.

1.3.4 Pageable link pack area (PLPA)
The PLPA is an area of common storage that is loaded at IPL time (when a cold start is
done and the CLPA option is specified). This area contains read-only system programs,
along with any read-only reenterable user programs selected by an installation that can be
shared among users of the system. The PLPA and extended PLPA contain all members of
SYS1.LPALIB and other libraries that are specified in the active LPALSTxx through the
LPA parameter in IEASYSxx or from the operator’s console at system initialization (this
would override the PARMLIB specification).

You may use one or more LPALSTxx members in SYS1.PARMLIB to concatenate your
installation’s program library data sets to SYS1.LPALIB. You can also use the
LPALSTxx member to add your installation’s read-only reenterable user programs to the
pageable link pack area (PLPA). The system uses this concatenation, which is referred to
as the LPALST concatenation, to build the PLPA during the nucleus initializing process.
SYS1.LPALIB must reside in a direct access volume, which can be the system residence
volume.

Figure 1-3 shows an example of the LPALSTxx member.
 Chapter 1. Overview of system programming 13

Figure 1-3 Example of LPALST PARMLIB member

1.3.5 Fixed link pack area (FLPA)
The FLPA is loaded at IPL time, with those modules listed in the active IEAFIXxx
member of SYS1.PARMLIB. This area should be used only for modules that
significantly increase performance when they are fixed rather than pageable. The best
candidates for the FLPA are modules that are infrequently used, but are needed for fast
response.

Modules from the LPALST concatenation, the linklist concatenation, SYS1.MIGLIB,
and SYS1.SVCLIB can be included in the FLPA. FLPA is selected through specification
of the FIX parameter in IEASYSxx, which is appended to IEAFIX to form the IEAFIXxx
PARMLIB member, or from the operator’s console at system initialization.

Figure 1-4 shows an example of an IEAFIX member; some of the modules for FLPA
belong to the SYS1.LPALIB library.

 F ile E d it E d it_ S e tt in g s M e n u U t ili t ie s C o m p ile rs Te s t H e lp
- -
E D IT S Y S 1 .P A R M L IB (L P A L S T 7 B) - 0 1 .0 3 C o lu m n s 0 0 0 0 1 0 0 0 7 2
C o m m a n d = = = > S c ro ll = = = > C S R
* * * * * * * To p o f D a ta *
0 0 0 2 0 0 S Y S 1 .L P A L IB ,
0 0 0 2 2 0 S Y S 1 .S E R B L P A ,
0 0 0 3 0 0 IS F.S IS F L P A ,
0 0 0 5 0 0 IN G .S IN G M O D 3 ,
0 0 0 6 0 0 N E T V IE W .S C N M L P A 1 ,
0 0 0 7 0 0 S D F 2 .V 1 R 4 M 0 .S D G IL P A ,
0 0 0 8 0 0 R E X X .S E A G L P A ,
0 0 1 0 0 0 S Y S 1 .S IA T L P A ,
0 0 1 1 0 0 E O Y .S E O Y L P A ,
0 0 1 2 0 0 S Y S 1 .S B D T L P A ,
0 0 1 3 0 0 C E E .S C E E L P A ,
0 0 1 4 0 0 IS P .S IS P L P A ,
0 0 1 6 0 0 S Y S 1 .S O R T L P A ,
0 0 1 7 0 0 S Y S 1 .S IC E L P A ,
0 0 1 8 0 0 E U V .S E U V L P A ,
0 0 1 9 0 0 T C P IP .S E Z A L P A ,
0 0 2 0 0 0 E Q A W .S E Q A L P A ,
0 0 2 0 0 1 ID I.S ID IA L P A ,
0 0 2 0 0 2 ID I.S ID IL P A 1 ,
0 0 2 0 0 3 D W W .S D W W L P A (S B O X 2 0) ,
0 0 2 0 1 0 S Y S 1 .S D W W D L P A ,
0 0 2 0 2 0 D V G .N F T P 2 3 0 .S D V G L P A ,
0 0 2 2 0 0 C IC S T S 2 2 .C IC S .S D F H L P A (S B O X D 3)
* * * * * * * B o t to m o f D a ta *
14 z/OS Basics

Figure 1-4 Example of an IEAFIX PARMLIB member

1.3.6 Modified link pack area (MLPA)
The MLPA can be used to contain reenterable routines from APF-authorized libraries
that are to be part of the pageable extension to the link pack area during the current IPL.
Note that the MLPA exists only for the duration of an IPL. Therefore, if an MLPA is
desired, the modules in the MLPA must be specified for each IPL (including quick start
and warm start IPLs). When the system searches for a routine, the MLPA is searched
before the PLPA. The MLPA can be used at IPL time to temporarily modify or update the
PLPA with new or replacement modules.

1.3.7 SYS1.PROCLIB
SYS1.PROCLIB is a required partitioned data set that contains the JCL procedures used
to perform certain system functions. The JCL can be for system tasks or processing
program tasks invoked by the operator or the programmer.

1.3.8 The master scheduler subsystem
The master scheduler subsystem is used to establish communication between the
operating system and the primary job entry subsystem, which can be JES2 or JES3.

 File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT SYS1.PARMLIB(IEAFIX00) - 01.00 Columns 00001
00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 INCLUDE LIBRARY(SYS1.LPALIB) MODULES(
000002 IEAVAR00
000003 IEAVAR06
000004 IGC0001G
000005)
000006 INCLUDE LIBRARY(FFST.V120ESA.SEPWMOD2) MODULES(
000007 EPWSTUB
000008)
****** **************************** Bottom of Data ****************************
 Chapter 1. Overview of system programming 15

When you start z/OS, master initialization routines initialize system services, such as the
system log and communication task, and start the master scheduler address space, which
becomes address space number one (ASID=1).

Then, the master scheduler may start the job entry subsystem (JES2 or JES3). JES is the
primary job entry subsystem. On many production systems JES is not started
immediately; instead, the automation package starts all tasks in a controlled sequence.
Then other defined subsystems are started. All subsystems are defined in the IEFSSNxx
member of PARMLIB. These subsystems are secondary subsystems.

An initial MSTJCL00 load module can be found in SYS1.LINKLIB library. If
modifications are required, the recommended procedure is to create a MSTJCLxx
member in PARMLIB. The suffix is specified by the MSTRJCL parameter in the
IEASYSxx member of PARMLIB. The MSTJCLxx member is commonly called master
JCL. It contains data definition (DD) statements for all system input and output data sets
that are needed to do the communication between the operating system and JES.

Example 1-1 shows an example of an MSTJCLxx member.

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT SYS1.PARMLIB(MSTJCL00) - 01.07 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000100 //MSTRJCL JOB MSGLEVEL=(1,1),TIME=1440
000200 // EXEC PGM=IEEMB860,DPRTY=(15,15)
000300 //STCINRDR DD SYSOUT=(A,INTRDR)
000400 //TSOINRDR DD SYSOUT=(A,INTRDR)
000500 //IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR
000600 // DD DSN=CPAC.PROCLIB,DISP=SHR
000700 // DD DSN=SYS1.IBM.PROCLIB,DISP=SHR
000800 //IEFJOBS DD DSN=SYS1.STCJOBS,DISP=SHR
000900 //SYSUADS DD DSN=SYS1.UADS,DISP=SHR
****** **************************** Bottom of Data ****************************

Example 1-1 Sample master JCL

When the master scheduler has to process the start of a started task, the system
determines whether the START command refers to a procedure or to a job. If the
IEFJOBS DD exists in the MSTJCLxx member, the system searches the IEFJOBS DD
concatenation for the member requested in the START command.

If there is no member by that name in the IEFJOBS concatenation, or if the IEFJOBS
concatenation does not exist, the system searches the IEFPDSI DD for the member
requested in the START command. If a member is found, the system examines the first
record for a valid JOB statement and, if one exists, uses the member as the JCL source
for the started task. If the member does not have a valid JOB statement in its first record,
16 z/OS Basics

the system assumes that the source JCL is a procedure and creates JCL to invoke the
procedure.

After the JCL source has been created (or found), the system processes the JCL. As
shipped, MSTJCL00 contains an IEFPDSI DD statement that defines the data set that
contains procedure source JCL for started tasks. Normally this data set is
SYS1.PROCLIB; it may be a concatenation. For useful work to be performed,
SYS1.PROCLIB must at least contain the procedure for the primary JES, as shown in
next section.

1.3.9 A job procedure library
SYS1.PROCLIB contains the JES2 cataloged procedure. This procedure defines the
job-related procedure libraries, as shown in Example 1-2.

Example 1-2 How to specify procedure libraries in the JES2 procedure

//PROC00 DD DSN=SYS1.PROCLIB,DISP=SHR
// DD DSN=SYS3.PROD.PROCLIB,DISP=SHR
//PROC01 DD DSN=SYS1.PROC2,DISP=SHR
...
//PROC99 DD DSN=SYS1.LASTPROC,DISP=SHR
...

Many installations have very long lists of procedure libraries in the JES procedure. This
is because JCLLIB is a relatively recent innovation.

Care should be taken as to the number of users who can delete these libraries because
JES will not start if one is missing. Normally a library that is in use cannot be deleted, but
JES does not hold these libraries although it uses them all the time.

You can override the default specification by specifying this statement:
/*JOBPARM PROCLIB=

After the name of the procedure library, you code the name of the DD statement in the
JES2 procedure that points to the library to be used. For example, in Figure 1-2, let’s
assume that you run a job in class A and that class has a default proclib specification on
PROC00. If you want to use a procedure that resides in SYS1.LASTPROC, you’ll need
to include this statement in the JCL:
/*JOBPARM PROCLIB=PROC99

Another way to specify a procedure library is to use the JCLLIB JCL statement. This
statement allows you to code and use procedures without using system procedure
libraries. The system searches the libraries in the order in which you specify them on the
JCLLIB statement, prior to searching any unspecified default system procedure libraries.
 Chapter 1. Overview of system programming 17

Example 1-3 shows the use of the JCLLIB statement.

Example 1-3 Sample JCLLIB statement

//MYJOB JOB
//MYLIBS JCLLIB ORDER=(MY.PROCLIB.JCL,SECOND.PROCLIB.JCL)
//S1 EXEC PROC=MYPROC1
...

Assuming that the system default procedure library includes SYS1.PROCLIB only, the
system searches the libraries for procedure MYPROC1 in the following order:
1. MY.PROCLIB.JCL
2. SECOND.PROCLIB.JCL
3. SYS1.PROCLIB

1.3.10 Search order for programs
When a program is requested through a system service (like LINK, LOAD, XCTL, or
ATTACH) using default options, the system searches for it in the following sequence:

1. Job pack area (JPA). A program in JPA has already been loaded in the requesting
address space. If the copy in JPA can be used, it will be used. Otherwise, the system
either searches for a new copy or defers the request until the copy in JPA becomes
available. (For example, the system defers a request until a previous caller is finished
before reusing a serially-reusable module that is already in JPA.)

2. TASKLIB. A program can allocate one or more data sets to a TASKLIB
concatenation. Modules loaded by unauthorized tasks that are found in TASKLIB
must be brought into private area virtual storage before they can run. Modules that
have previously been loaded in common area virtual storage (LPA modules or those
loaded by an authorized program into CSA) must be loaded into common area virtual
storage before they can run.

3. STEPLIB or JOBLIB. These are specific DD names that can be used to allocate
data sets to be searched ahead of the default system search order for programs. Data
sets can be allocated to both the STEPLIB and JOBLIB concatenations in JCL or by a
program using dynamic allocation. However, only one or the other will be searched
for modules. If both STEPLIB and JOBLIB are allocated for a particular jobstep, the
system searches STEPLIB and ignores JOBLIB.

Any data sets concatenated to STEPLIB or JOBLIB will be searched after any
TASKLIB but before LPA. Modules found in STEPLIB or JOBLIB must be brought
into private area virtual storage before they can run. Modules that have previously
been loaded in common area virtual storage (LPA modules or those loaded by an
authorized program into CSA) must be loaded into common area virtual storage
before they can run.

4. LPA, which is searched in this order:
18 z/OS Basics

a. Dynamic LPA modules, as specified in PROGxx members
b. Fixed LPA (FLPA) modules, as specified in IEAFIXxx members
c. Modified LPA (MLPA) modules, as specified in IEALPAxx members
d. Pageable LPA (PLPA) modules, loaded from libraries specified in LPALSTxx or

PROGxx

LPA modules are loaded in common storage, shared by all address spaces in the
system. Because these modules are reentrant and are not self-modifying, each can be
used by any number of tasks in any number of address spaces at the same time.
Modules found in LPA do not need to be brought into virtual storage, because they
are already in virtual storage.

5. Libraries in the linklist, as specified in PROGxx and LNKLSTxx. By default, the
linklist begins with SYS1.LINKLIB, SYS1.MIGLIB, and SYS1.CSSLIB. However,
you can change this order using SYSLIB in PROGxx and add other libraries to the
linklist concatenation. The system must bring modules found in the linklist into
private area virtual storage before the programs can run.

The default search order can be changed by specifying certain options on the macros used
to call programs. The parameters that affect the search order the system will use are EP,
EPLOC, DE, DCB, and TASKLIB.

Related Reading: For more information about these parameters, see the topic on load
module search in the IBM publication z/OS MVS Programming: Assembler Services
Guide. Some IBM subsystems (notably CICS and IMS) and applications (such as ISPF)
use these facilities to establish search orders for other programs.

1.3.11 What system symbols are
System symbols are elements that allow different z/OS systems to share PARMLIB
definitions while retaining unique values in those definitions. System symbols act like
variables in a program; they can take on different values, based on the input to the
program. When you specify a system symbol in a shared PARMLIB definition, the
system symbol acts as a “placeholder”. Each system that shares the definition replaces
the system symbol with a unique value during initialization.

Each system symbol has a name (which begins with an ampersand (&) and optionally
ends with a period (.)) and a substitution text, which is the character string that the system
substitutes for a symbol each time it appears.

There are two types of system symbols:

dynamic The substitution text can change at any point in an IPL.

static The substitution text is defined at system initialization and remains fixed for
the life of an IPL.
 Chapter 1. Overview of system programming 19

There are symbols that are reserved for system use. You can display the symbols in your
system by entering the D SYMBOLS command. Example 1-4 shows the result of entering
this command.

Example 1-4 Partial output of the D SYMBOLS command (some lines removed)

HQX7708 ----------------- SDSF PRIMARY OPTION MENU --
COMMAND INPUT ===> -D SYMBOLS
 IEA007I STATIC SYSTEM SYMBOL VALUES
 &SYSALVL. = "2"
 &SYSCLONE. = "70"
 &SYSNAME. = "SC70"
 &SYSPLEX. = "SANDBOX"
 &SYSR1. = "Z17RC1"
 &ALLCLST1. = "CANCEL"
 &CMDLIST1. = "70,00"
 &COMMDSN1. = "COMMON"
 &DB2. = "V8"
 &DCEPROC1. = "."
 &DFHSMCMD. = "00"
 &DFHSMHST. = "6"
 &DFHSMPRI. = "NO"
 &DFSPROC1. = "."
 &DLIB1. = "Z17DL1"
 &DLIB2. = "Z17DL2"
 &DLIB3. = "Z17DL3"
 &DLIB4. = "Z17DL4"
 &IEFSSNXX. = "R7"
 &IFAPRDXX. = "4A"

The IEASYMxx member of PARMLIB provides a single place to specify system
parameters for each system in a multisystem environment. IEASYMxx contains
statements that define static system symbols and specify IEASYSxx members that
contain system parameters (the SYSPARM statement).

Example 1-5 shows a portion of a typical IEASYMxx member

Example 1-5 Partial IEASYMxx PARMLIB member (some lines removed)

SYSDEF SYSCLONE(&SYSNAME(3:2))
 SYMDEF(&SYSR2='&SYSR1(1:5).2')
 SYMDEF(&SYSR3='&SYSR1(1:5).3')
 SYMDEF(&DLIB1='&SYSR1(1:3).DL1')
 SYMDEF(&DLIB2='&SYSR1(1:3).DL2')
 SYMDEF(&DLIB3='&SYSR1(1:3).DL3')
 SYMDEF(&DLIB4='&SYSR1(1:3).DL4')
 SYMDEF(&ALLCLST1='CANCEL')
 SYMDEF(&CMDLIST1='&SYSCLONE.,00')
20 z/OS Basics

 SYMDEF(&COMMDSN1='COMMON')
 SYMDEF(&DFHSMCMD='00')
 SYMDEF(&IFAPRDXX='00')
 SYMDEF(&DCEPROC1='.')
 SYMDEF(&DFSPROC1='.')
 SYSDEF HWNAME(SCZP901)
 LPARNAME(A13)
 SYSNAME(SC70)
 SYSPARM(R3,70)
 SYMDEF(&IFAPRDXX='4A')
 SYMDEF(&DFHSMHST='6')
 SYMDEF(&DFHSMPRI='NO')
 SYMDEF(&DB2='V8')

In the example, the variable &SYSNAME will have the value specified by the
SYSNAME keyword - SC70 in this case. Because each system in a sysplex has a unique
name, we can use &SYSNAME in the specification of system-unique resources, where
permitted. As an example, we could specify the name of an SMF data set as
SYS1.&SYSNAME..MAN1, with substitution resulting in the name SYS1.SC70.MAN1
when running on SC70.

You can use variables to construct the values of other variables. In Figure 1-5, we see
&SYSCLONE taking on the value of &SYSNAME beginning at position 3 for a length
of 2. Here, &SYSCLONE will have a value of 70. Similarly, we see &SYSR2
constructed from the first 5 positions of &SYSR1 with a suffix of 2. Where is &SYSR1
defined? &SYSR1 is system-defined with the VOLSER of the IPL volume. If you refer
back to Figure 1-4 on page 20, you will see the values of &SYSR1 and &SYSR2.

We also see here the definition of a global variable defined to all systems - &IFAPRDXX
with a value of 00 - and its redefinition for SC70 to a value of 4A.

System symbols are used in cases where multiple z/OS systems will share a single
PARMLIB. Here, the use of symbols allows individual members to be used with
symbolic substitution, as opposed to having each system require a unique member. The
LOADxx member specifies the IEASYMxx member that the system is to use.

1.4 Managing system performance
The task of “tuning” a system is an iterative and continuous process, and it is the
discipline that most directly impacts all users of system resources in an enterprise. The
z/OS Workload Management (WLM) component is an important part of this process and
includes initial tuning of selecting appropriate parameters for various system components
and subsystems.
 Chapter 1. Overview of system programming 21

After the system is operational and criteria have been established for the selection of jobs
for execution through job classes and priorities, WLM controls the distribution of
available resources according to the parameters specified by the installation.

WLM, however, can only deal with available resources. If these are inadequate to meet
the needs of the installation, even optimal distribution may not be the answer; other areas
of the system should be examined to determine the possibility of increasing available
resources. When requirements for the system increase and it becomes necessary to shift
priorities or acquire additional resources (such as a larger processor, more storage, or
more terminals), the system programmer needs to modify WLM parameters to reflect
changed conditions.

1.5 Configuring I/O devices
The I/O configuration to the operating system (software) and the channel subsystem
(hardware) must be defined. The Hardware Configuration Definition (HCD) component
of z/OS consolidates the hardware and software I/O configuration processes under a
single interactive end-user interface (a large set of ISPF panels).

HCD is used for several purposes:
� Using input from the ISPF panels, it builds a special VSAM data set that defines the

I/O configuration available to z/OS. The data set is known as an I/O definition file
(IODF), which contains I/O configuration data. An IODF is used to define multiple
hardware and software configurations to the z/OS operating system. When z/OS is
started, an IODF must be specified. Every I/O device used by z/OS must be defined
in the IODF.

� HCD builds an I/O definition for the complete mainframe machine and sends it to the
controller section of the mainframe. This definition also specifies the existence of
LPARs and other system-wide parameters. This is known as an I/O Configuration
Data Set (IOCDS). The IOCDS is discussed in more detail in Chapter 3, “Hardware
systems and LPARs” on page 77.

� HCD can be used to create a new IODF from an existing IODF and dynamically
activate the new version.

When a new IODF is activated, HCD defines the I/O configuration to the channel
subsystem and/or the operating system. With the HCD activate function or the z/OS
ACTIVATE operator command, changes can be made in the current configuration
without having to initial program load (IPL) the software or power-on reset (POR) the
hardware. Making changes while the system is running is known as dynamic
configuration or dynamic reconfiguration.

An IODF and IOCDS can contain definitions for I/O devices that do not exist or are not
currently attached. It need not contain definitions for all I/O devices, although the system
22 z/OS Basics

(for the IOCDS) or z/OS (for an IODF) cannot use a device that is not defined. HCD is
included with all z/OS systems.

1.6 Following a process of change control
Data center management is typically held accountable for Service Level Agreements
(SLAs), often through a specialist team of service managers. Change control mechanics
and practices in a data center are implemented to ensure that SLAs are met.

The implementation of any change must be under the control of the Operations staff.
When a change is introduced into a production environment that results in problems or
instability, Operations staff are responsible for observing, reporting, and then managing
the activities required to correct the problem or back out the change.

Although system programmers will normally raise and implement their own changes,
sometimes changes are based on a request through the change management system. Any
instructions for Operations or other groups would be in the change record, and the
approval of each group is required.

Implementing business application changes would normally be handled by a production
control analyst. Application changes will normally reside in test libraries, and an official
request (with audit trail) would result in the programs in the test libraries being promoted
to the production environment.

Procedures involved in the change must be circulated to all interested parties. When all
parties consider the change description to be complete, then it is considered for
implementation and either scheduled, deferred, or possibly rejected.

The factors that need to be considered when planning a change are:
� The benefits that will result from the change
� What will happen if the change is not done
� The resources required to implement the change
� The relative importance of the change request compared to others
� Any interdependency of change requests

All change involves risk. One of the advantages of the mainframe is the very high
availability that it offers. All change must therefore be carefully controlled and managed.
A high proportion of any system programmer’s time is involved in the planning and risk
assessment of change. One of the most important aspects of change is how to reverse it
and go back to the previous state.
 Chapter 1. Overview of system programming 23

1.6.1 Risk assessment
It is common practice for data center management to have a weekly change control
meeting to discuss, approve, or reject changes. These changes might be for applications,
a system, a network, hardware, or power.

An important part of any change is risk assessment, in which the change is considered
and evaluated from the point of view of risk to the system. Low risk changes may be
permitted during the day, while higher risk changes would be scheduled for an outage
slot.

It is also common practice for a data center to have periods of low and high risk, which
will influence decisions. For example, if the system runs credit authorizations, then the
periods around major public holidays are usually extremely busy and may cause a change
freeze. Also, annual sales are extremely busy periods in retailing and may cause changes
to be rejected.

IT organizations achieve their goals through disciplined change management processes
and policy enforcement. These goals include:
� High service availability
� Increased security
� Audit readiness
� Cost savings

1.6.2 Change control record system
A change control record system is typically in place to allow for the requesting, tracking,
and approval of changes. This is usually the partner of a problem management system.
For example, if a production system has a serious problem on a Monday morning, then
one of the first actions will be to examine the changes that were implemented over the
weekend to determine if these have any bearing on the problem.

These records also show that the system is under control, which is often necessary to
prove to auditors, especially in the heavily regulated financial services sector. The
Sarbanes-Oxley Act of 2002 in the United States, which addresses corporate governance,
has established the need for an effective internal control system. Demonstrating strong
change management and problem management in IT services is part of compliance with
this measure. Additionally, the 8th Directive on Company Law in the European Union,
which is under discussion at the time of writing, will address similar areas to
Sarbanes-Oxley.

For these reasons, and at a bare minimum, before any change is implemented there
should be a set of controlled documents defined, which are known as change request
forms. These should include the following:
24 z/OS Basics

� Who - that is, the department, group or person that requires the change, who is
responsible for implementing the change, completing the successful test and
responsible for backout if required. Also who will “sign off” the change as successful.

� What - that is, the affected systems or services (for example e-mail, file service,
domain, etc.). Include as much detail as possible. Ideally, complete instructions
should be included so that the change could be performed by someone else in an
emergency.

� Where - that is, scope of change, the business units, buildings, departments or groups
affected or required to assist with the change.

� When - that is, start date and time and estimated duration of the change. There are
often three dates: requested, scheduled. and actual.

� Priority - that is, high, medium, low, business as usual, emergency, dated (for
example clock change).

� Risk - that is, high, medium, low
� Impact - that is, what will happen if the change is implemented; what will happen if it

is not; what other systems may be affected; what will happen if something
unexpected occurs.

1.6.3 Production control
Production control usually involves a specialized staff to manage batch scheduling, using
a tool such as Tivoli® Workload Scheduler to build and manage a complex batch
schedule. This work might involve daily and weekly backups running at particular points
within a complex sequence of application suites. Databases and online services might
also be taken down and brought back up as part of the schedule. While making such
changes, production control often needs to accommodate public holidays and other
special events such as (in the case of a retail sales business) a winter sale.

Production control is also responsible for taking a programmer’s latest program and
releasing it to production. This task typically involves moving the source code to a secure
production library, recompiling the code to produce a production load module, and
placing that module in a production load library. JCL is copied and updated to production
standards and placed in appropriate procedure libraries, and application suites added to
the job scheduler.

There might also be an interaction with the system programmer if a new library needs to
be added to the linklist, or authorized.
 Chapter 1. Overview of system programming 25

1.7 Configuring consoles
Operating z/OS involves managing hardware such as processors and peripheral devices
(including the consoles where your operators do their work); and software such as the
z/OS operating control system, the job entry subsystem, subsystems (such as NetView®)
that can control automated operations, and all the applications that run on z/OS.

The operation of a z/OS system involves the following:
� Message and command processing that forms the basis of operator interaction with

z/OS and the basis of z/OS automation
� Console operations, or how operators interact with z/OS to monitor or control the

hardware and software

Planning z/OS operations for a system must take into account how operators use consoles
to do their work and how to manage messages and commands. The system programmer
needs to ensure that operators receive the necessary messages at their consoles to perform
their tasks, and select the proper messages for suppression, automation, or other kinds of
message processing.

In terms of z/OS operations, how the installation establishes console recovery or whether
an operator must re-IPL a system to change processing options are important planning
considerations.

Because messages are also the basis for automated operations, the system programmer
needs to understand message processing to plan z/OS automation.

As more installations make use of multisystem environments, the need to coordinate the
operating activities of those systems becomes crucial. Even for single z/OS systems, an
installation needs to think about controlling communication between functional areas
(such as a tape-pool library and the master console area, for example). In both single and
multisystem environments, the commands that operators can enter from consoles can be
a security concern that requires careful coordination. As a planner, the system
programmer needs to make sure that the right people are doing the right tasks when they
interact with z/OS.

A console configuration consists of the various consoles that operators use to
communicate with z/OS. Your installation first defines the I/O devices it can use as
consoles through the Hardware Configuration Definition (HCD), an interactive interface
on the host that allows the system programmer to define the hardware configuration for
both the channel subsystem and operating system.

Hardware Configuration Manager (HCM) is the graphical user interface to HCD. HCM
interacts with HCD in a client/server relationship (that is, HCM runs on a workstation
and HCD runs on the host). The host systems require an internal model of their
connections to devices, but it can be more convenient and efficient for the system
26 z/OS Basics

programmer to maintain (and supplement) that model in a visual form. HCM maintains
the configuration data as a diagram in a file on the workstation in sync with the IODF on
the host. While it is possible to use HCD directly for hardware configuration tasks, many
customers prefer to use HCM exclusively, due to its graphical interface.

Besides HCD, once the devices have been defined, z/OS is told which devices to use as
consoles by specifying the appropriate device numbers in the CONSOLxx PARMLIB
member.

Generally, operators on a z/OS system receive messages and enter commands on MCS
and SMCS consoles. They can use other consoles (such as NetView consoles) to interact
with z/OS, but here we describe MCS, SMCS, and EMCS consoles and how to plan for
their use:
� MCS consoles are devices that are locally attached to a z/OS system and provide the

basic communication between operators and z/OS. (MCS consoles are attached to
control devices that do not support systems network architecture (SNA) protocols.)

� SMCS consoles are devices that do not have to be locally attached to a z/OS system
and provide the basic communication between operators and z/OS. SMCS consoles
use z/OS Communications Server to provide communication between operators and
z/OS, instead of direct I/O to the console device.

� EMCS consoles are devices (other than MCS or SMCS consoles) from which
operators or programs can enter commands and receive messages. Defining extended
MCS consoles as part of the console configuration allows the system programmer to
extend the number of consoles beyond the MCS console limit, which is 99 for an
z/OS system or sysplex.

The system programmer defines these consoles in a configuration according to their
functions. For example, one console can function as a master console for the system.
Important messages that require action can be directed to the operator, who can act by
entering commands on the console. Another console can act as a monitor to display
messages to an operator working in a functional area like a tape pool library, or to display
messages about printers at your installation.

Figure 1-5 shows a console configuration for a z/OS system that also includes the system
console, an SMCS console, NetView, and TSO/E.
 Chapter 1. Overview of system programming 27

Figure 1-5 Sample console configuration for a z/OS system

The system console function is provided as part of the Hardware Management Console
(HMC). An operator can use the system console to initialize z/OS and other system
software, and during recovery situations when other consoles are unavailable.

Besides MCS and SMCS consoles, the z/OS system shown in Figure 1-5 has a NetView
console defined to it. NetView works with system messages and command lists to help
automate z/OS operator tasks. Many system operations can be controlled from a NetView
console.

Users can monitor many z/OS system functions from TSO/E terminals. Using the System
Display and Search Facility (SDSF) and the Resource Measurement Facility (RMF™),
TSO/E users can monitor z/OS and respond to workload balancing and performance
problems. An authorized TSO/E user can also initiate an extended MCS console session
to interact with z/OS.

System console
(attached to the
processor
controller)

MCS Master
console

MCS status
display
console

MCS message
stream console

SMCS
console

TSO/E
session with

SDSF

TSO/E session
with RMF

Extended MCS
console with
master authority

NetView
console

VTAM
(SMCS) TSO/E

N
E
T
V
I
E
W

z/OS operating system
28 z/OS Basics

The MCS consoles shown in Figure 1-5 are:
� An MCS master console from which an operator can view messages and enter all

z/OS commands

This console is in full capability mode because it can receive messages and accept
commands. An operator can control the operations for the z/OS system from an MCS
or SMCS master console.

� An MCS status display console

An operator can view system status information from DEVSERV, DISPLAY,
TRACK, or CONFIG commands. However, because this is a status display console,
an operator cannot enter commands from the console. An operator on a full capability
console can enter these commands and route the output to a status display console for
viewing.
Note: an SMCS console cannot be a status display console.

� An MCS message-stream console

A message-stream console can display system messages. An operator can view
messages routed to this console. However, because this is a message-stream console,
an operator cannot enter commands from here. Routing codes and message level
information for the console are defined so that the system can direct relevant
messages to the console screen for display. Thus, an operator who is responsible for a
functional area like a tape pool library, for example, can view MOUNT messages. An
SMCS console cannot be a message stream console.

In many installations, this proliferation of screens has been replaced by operator
workstations that combine many of these screens onto one windowed display. Generally,
the hardware console is separate, but most other terminals are combined. The systems are
managed by alerts for exception conditions from the automation product.

The IBM Open Systems Adapter-Express Integrated Console Controller (OSA-ICC) is
the modern way of connecting consoles. OSA-ICC uses TCP/IP connections over
Ethernet LAN to attach to personal computers as consoles through a TN3270 connection
(telnet).

1.8 Using SMP/E to manage changes
System Management Program/Extended (SMP/E) is the program used by the system
programmers to install software products, updates, and fixes on z/OS. Using SMP/E is
one of the most complex functions associated with maintaining z/OS software.
Figure 0-1 illustrates the general flow when using SMP/E to apply a fix to z/OS. Such
fixes for z/OS software are known as PTFs, for Product Temporary Fix.
 Chapter 1. Overview of system programming 29

Figure 0-1 SMP/E overview for fixes

SMP/E works with three levels of libraries:

� A receive-level library that is a holding area - This library is known as the PTS (PTF
Temporary Storage) and is in the GLOBAL zone.

� Operational or target libraries - These are the working libraries used by z/OS and
various software products while they are installed for use.

� Distribution libraries or DLIBs - These contain a master copy of all the modules in the
operational libraries. The DLIBs are not used for execution.

Each set of libraries has a Consolidated Software Index (CSI), which is a VSAM data set
containing data about all the modules in the set. In principle, it is possible to rebuild any
operational z/OS module from the DLIBs. The CSI contains all the binder (linkage
editor) control statements needed to rebuild an operational module from submodules in
the DLIBs.

The SMP/E RECEIVE command is used to accept modules (or submodules of a larger
module) that are fixes for distributed products. The RECEIVEed module is placed in the
PTS. The APPLY CHECK command is used to determine whether the fix can be cleanly
applied to the operational module. (This may involve relinking/rebinding many
submodules.) If these checks are positive, the APPLY command is used to install the fix
in the operational libraries. The installation would then use the fixed module and
determine whether it is acceptable. If it is not acceptable, a RESTORE command can
rebuild the original module from material in the DLIBs.

RECEIVE

GLOBAL
LIBRARY

APPLY [CHECK]

OPERATIONAL
LIBRARIES

DISTRIBUTION
LIBRARIES

ACCEPT

RESTORE

PTS CSI

LibsLibs

LibsLibs

LibsLibs

DELETE

CSI

REJECT

CSI

LibsLibs

LibsLibs

LibsLibs
30 z/OS Basics

If the fix is acceptable (and it make take months to determine this) an ACCEPT
command integrates the fix module into the DLIBs. After this is done, the fix can no
longer be backed out of the system (except by restoring old backup tapes, perhaps).
Future fixes can then be built on top of this fix in the DLIBs. A REJECT command is
used to discard a fix from the global area; this might be done if someone decides the fix
will never be used.

SMP/E control statements can verify the status of previous and concurrent fixes, the
existence of a product and its release level, and many other factors.

z/OS and practically all z/OS software products from IBM are installed using SMP/E.
Most independent software vendor products are installed by using SMP/E. Many z/OS
installations will not purchase any software that is not installed with SMP/E.

Each product can have its own global, target, and DLIB libraries, or many products can
be placed in the same set of global, target, and DLIB libraries. SMP/E is included with all
z/OS systems.

SMP/E usage can be quite complex and SMP/E skills are a primary prerequisite for a
z/OS system programmer. The DLIBs for a product (including z/OS) tend to be as large
as the operational libraries. In a sense, almost all the software for z/OS and most
associated software products are present twice on disk, once for the operational libraries
and once for the distribution libraries.

In earlier days, when disks were smaller and more expensive, some installations did not
keep their DLIBs online. In principle, they are needed only when a fix or new product is
installed and they could occupy a number of disk drives. Smaller installations might
dump the DLIB volumes onto tape and restore them (to scratch disks) only when needed.
In even earlier days the use of SMP/E was considered optional and some installations did
not maintain their DLIBs. In today’s systems, however, the DLIBs are required for most
practical purposes and are usually available online.

1.9 Initializing the system
An initial program load (IPL) is the act of loading a copy of the operating system from
disk into the processor’s real storage and executing it.

z/OS systems are designed to run continuously with many months between reloads,
allowing important production workloads to be continuously available. Change is the
usual reason for a reload, and the level of change on a system dictates the reload
schedule. For example:
� A test system may be IPLed daily or even more often.
� A high-availability banking system may only be reloaded once a year, or even less

frequently, to refresh the software levels.
 Chapter 1. Overview of system programming 31

� Outside influences may often be the cause of IPLs, such as the need to test and
maintain the power systems in the machine room.

� Sometimes badly behaved software uses up system resources that can only be
replenished by an IPL, but this sort of behavior is normally the subject of
investigation and correction.

Many of the changes that required an IPL in the past can now be done dynamically.
Examples of these tasks are:
� Changing the content of linklist, the APF list or the IO configuration
� Adding modules to LPA

z/OS is IPLed using the Hardware Management Console (HMC). You need to supply the
following information to IPL z/OS:
� Device address of the IPL volume
� Suffix of the LOADxx member, which contains pointers to system parameters and the

IODF data set, which contains the configuration information.
� Device address of the IODF volume, which is the starting point for the system search

for the SYSn.IPLPARM data set that contains the LOADxx member.
� Message suppression character
� Optional nucleus suffix

1.9.1 Initialization process
The system initialization process (Figure 1-6 on page 33) prepares the system control
program and its environment to do work for the installation. This process essentially
consists of:
� System and storage initialization, including the creation of system component address

spaces
� Master scheduler initialization and subsystem initialization

When the system is initialized and the job entry subsystem is active, the installation can
submit jobs for processing by using the START, LOGON, or MOUNT command.

The initialization process begins when the system programmer selects the LOAD
function at the Hardware Management Console (HMC). z/OS locates all usable central
storage that is online and available, and begins creating the various system areas.
32 z/OS Basics

Figure 1-6 IPLing the machine

Not all disks attached to a CPU have loadable code on them. A disk that does is generally
referred to as an “IPLable” disk, and more specifically as the SYSRES volume.

IPLable disks contain a bootstrap module at cylinder 0 track 0. At IPL, this bootstrap is
loaded into storage at real address zero and control is passed to it. The bootstrap then
reads the IPL control program IEAIPL00 (also known as IPL text) and passes control to
it. This in turn starts the more complex task of loading the operating system and
executing it.

After the bootstrap is loaded and control is passed to IEAIPL00, IEAIPL00 prepares an
environment suitable for starting the programs and modules that make up the operating
system, as follows:

1. It clears central storage to zeros before defining storage areas for the master
scheduler.

2. It locates the SYS1.NUCLEUS data set on the SYSRES volume and loads a series of
programs from it known as IPL Resource Initialization Modules (IRIMs).

3. These IRIMs begin creating the normal operating system environment of control
blocks and subsystems.

LOADPARM

IPL

bootstrap
IPL ccuu

SYSRES

IPLtext

IODF ccuu LOADxx IMSI Alt
Nuc

1 - 4 5 - 6 7 8
 Chapter 1. Overview of system programming 33

Some of the more significant tasks performed by the IRIMs are as follows:
� Read the LOADPARM information entered on the hardware console at the time the

IPL command was executed.
� Search the volume specified in the LOADPARM member for the IODF data set.

IRIM will first attempt to locate LOADxx in SYS0.IPLPARM. If this is unsuccessful,
it will look for SYS1.IPLPARM, and so on, up to and including SYS9.IPLPARM. If
at this point it still has not been located, the search continues in SYS1.PARMLIB. (If
LOADxx cannot be located, the system loads a wait state.)

� If a LOADxx member is found, it is opened and information including the nucleus
suffix (unless overridden in LOADPARM), the master catalog name, and the suffix of
the IEASYSxx member to be used, is read from it.

� Load the operating system’s nucleus.
� Initialize virtual storage in the master scheduler address space for the System Queue

Area (SQA), the Extended SQA (ESQA), the Local SQA (LSQA), and the Prefixed
Save Area (PSA). At the end of the IPL sequence, the PSA will replace IEAIPL00 at
real storage location zero, where it will then stay.

� Initialize real storage management, including the segment table for the master
scheduler, segment table entries for common storage areas, and the page frame table.

The last of the IRIMs then loads the first part of the Nucleus Initialization Program
(NIP), which invokes the Resource Initialization Modules (RIMs), one of the earliest of
which starts up communications with the NIP console defined in the IODF.

The system continues the initialization process, interpreting and acting on the system
parameters that were specified. NIP carries out the following major initialization
functions:
� Expands the SQA and the extended SQA by the amounts specified on the SQA

system parameter.
� Creates the pageable link pack area (PLPA) and the extended PLPA for a cold start

IPL; resets tables to match an existing PLPA and extended PLPA for a quick start or a
warm start IPL.

� Loads modules into the fixed link pack area (FLPA) or the extended FLPA. Note that
NIP carries out this function only if the FIX system parameter is specified.

� Loads modules into the modified link pack area (MLPA) and the extended MLPA.
Note that NIP carries out this function only if the MLPA system parameter is
specified.

� Allocates virtual storage for the common service area (CSA) and the extended CSA.
The amount of storage allocated depends on the values specified on the CSA system
parameter at IPL.

� Page-protects the NUCMAP, PLPA and extended PLPA, MLPA and extended MLPA,
FLPA and extended FLPA, and portions of the nucleus.
34 z/OS Basics

Note: An installation can override page protection of the MLPA and FLPA by specifying
NOPROT on the MLPA and FIX system parameters.

Related Reading: For more information about quick starts and warm starts, see the IBM
publication z/OS MVS Initialization and Tuning Reference.

IEASYSnn, a member of PARMLIB, contains parameters and pointers that control the
direction that the IPL takes. See Example 1-7:
--
File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT SYS1.PARMLIB(IEASYS00) - 01.68 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 ALLOC=00,
000002 APG=07,
000003 CLOCK=00,
000004 CLPA,
000005 CMB=(UNITR,COMM,GRAPH,CHRDR),
000006 CMD=(&CMDLIST1.),
000007 CON=00,
000008 COUPLE=00, WAS FK
000009 CSA=(2M,128M),
000010 DEVSUP=00,
000011 DIAG=00,
000012 DUMP=DASD,
000013 FIX=00,
000014 GRS=STAR,
000015 GRSCNF=ML,
000016 GRSRNL=02,
000017 IOS=00,
000018 LNKAUTH=LNKLST,
000019 LOGCLS=L,
000020 LOGLMT=999999,
000021 LOGREC=SYS1.&SYSNAME..LOGREC,
000022 LPA=(00,L),
000023 MAXUSER=1000,
000024 MSTRJCL=00,
000025 NSYSLX=250,
000026 OMVS=&OMVSPARM.,

Figure 1-7 Partial listing of IEASYS00 member

To see information about how your system was IPLed, you can enter the command D
IPLINFO as shown in Example 1-6.
 Chapter 1. Overview of system programming 35

Example 1-6 Output of D IPLINFO command

D IPLINFO
IEE254I 11.11.35 IPLINFO DISPLAY 906
 SYSTEM IPLED AT 10.53.04 ON 08/15/2005
 RELEASE z/OS 01.07.00 LICENSE = z/OS
 USED LOADS8 IN SYS0.IPLPARM ON C730
 ARCHLVL = 2 MTLSHARE = N
 IEASYM LIST = XX
 IEASYS LIST = (R3,65) (OP)
 IODF DEVICE C730
 IPL DEVICE 8603 VOLUME Z17RC1

System address space creation
In addition to initializing system areas, z/OS establishes system component address
spaces. It establishes an address space for the master scheduler and other system address
spaces for various subsystems and system components. Some of the component address
spaces are: *MASTER*, ALLOCAS, APPC, CATALOG, and so on.

Master scheduler initialization
Master scheduler initialization routines initialize system services such as the system log
and communications task, and start the master scheduler itself. They also cause creation
of the system address space for the job entry subsystem (JES2 or JES3), and then start the
job entry subsystem.

Subsystem initialization
Subsystem initialization is the process of readying a subsystem for use in the system. One
or more IEFSSNxx members of PARMLIB contain the definitions for the primary
subsystems such as JES2 or JES3, and the secondary subsystems such as NetView and
DB2.

During system initialization, the defined subsystems are initialized. The primary
subsystem (JES) is usually defined first because other subsystems, such as DB2, require
the services of the primary subsystem in their initialization routines.

After the primary JES is initialized, the other subsystems are initialized in the order in
which the IEFSSNxx members are specified by the SSN parameter. For example, for
SSN=(aa,bb), PARMLIB member IEFSSNaa would be processed before IEFSSNbb.

START/LOGON/MOUNT processing
After the system is initialized and the job entry subsystem is active, jobs can be submitted
for processing. When a job is activated through START (for batch jobs), LOGON (for
time-sharing jobs), or MOUNT, a new address space is allocated. Note that before
36 z/OS Basics

LOGON, the operator must have started VTAM and TSO, which have their own address
spaces.

Figure 1-8 shows some of the important system address spaces and VTAM, CICS, TSO,
a TSO user and a batch initiator. Each address space has 2 GB of virtual storage by
default, whether the system is running in 31-bit or 64-bit mode.

Figure 1-8 Virtual storage layout for multiple address spaces

Recall that each address space is divided into various common and private storage areas.
The private areas are available only to that address space, but common areas are available
to all.

During initialization of a z/OS system, the operator uses the system console or hardware
management console, which is connected to the support element. From the system
console, the operator initializes the system control program during the Nucleus
Initialization Program (NIP) stage.

During the NIP stage, the system might prompt the operator to provide system
parameters that control the operation of z/OS. The system also issues informational
messages that inform the operator about the stages of the initialization process.

1.9.2 IPL types
Several types of IPL exist; these are described as follows:

Started tasks

*
M
A
S
T
E
R
*

P
C
A
U
T
H

R
A
S
P

T
R
A
C
E

. . .

C
A
T
A
L
O
G

C
O
N
S
O
L
E

A
L
L
O
C
A
S

V
L
F

L
L
A

J
E
S

V
T
A
M

C
I
C
S

T
S
O

T
S
O

U
S
E
R

I
N
I

T
/
J
O
B

Batch
job

TSO
Logon

System and
subsystem

address spaces

S
M
S

 Chapter 1. Overview of system programming 37

� Cold start

An IPL that loads (or reloads) the PLPA and clears the VIO data set pages. The first
IPL after system installation is always a cold start because the PLPA is initially
loaded. Subsequent IPLs are cold starts when the PLPA is reloaded, either to alter its
contents or to restore its contents if they were lost. This is usually done when changes
have been made to the LPA (for example, when a new SYSRES containing
maintenance is being loaded).

� Quick start

An IPL that does not reload the PLPA, but clears the VIO data set pages. (The system
resets the page and segment tables to match the last-created PLPA.) This is usually
done when there have been no changes to LPA, but VIO must be refreshed. This
prevents the warm start of jobs that were using VIO data sets.

� Warm start

An IPL that does not reload the PLPA, and preserves journaled VIO data set pages.
This will allow jobs that were running at the time of the IPL to restart with their
journaled VIO data sets.

Often, the preferred approach is to do a cold start IPL (specifying CLPA). The other
options can be used, but extreme care must be taken to avoid unexpected change or
backout of change. A warm start could be used when you have long-running jobs which
you want to restart after IPL, but an alternative approach is to break down those jobs into
smaller pieces which pass real data sets rather than use VIO. Modern disk controllers
with large cache memory have reduced the need for VIO data to be kept for long periods.

Also, do not confuse a cold start IPL (CLPA would normally be used rather than the term
“cold start”) with a JES cold start. Cold starting JES is something that is done extremely
rarely, if ever, on a production system, and totally destroys the existing data in JES.

1.9.3 Shutting down the system
To shut down the system each task must be closed in turn, in the correct order. On
modern systems, this is the task of the automation package. Shutting down the system
usually requires a single command. This will remove most tasks except Automation
itself. The Automation task is closed manually, and then any commands needed to
remove the system from a sysplex or serialization ring are issued.

Note: VIO is a method of using memory to store small temporary data sets for
rapid access. However, unlike a RAM disk on a PC, these are actually backed up
to disk and so can be used as a restart point. Obviously there should not be too
much data stored in this way, so the size is restricted.
38 z/OS Basics

1.10 Summary
The role of the z/OS system programmer is to install, customize, and maintain the
operating system.

The system programmer must understand the following areas (and more):
� System customization
� Workload management
� System performance
� I/O device configuration
� Operations

To maximize the performance of the task of retrieving modules, the z/OS operating
system has been designed to maintain in memory those modules that are needed for fast
response to the operating system, as well as for critical applications. Link pack area
(LPA), linklist, and authorized libraries are the cornerstones of the fetching process.

Also discussed was the system programmer’s role in configuring consoles, setting up
message-based automation, and using SMP/E to manages changes to the system
software.

System start-up or IPL was introduced with the following topics:
� IPL and the initialization process
� Types of IPLs: cold start, quick start, and warm start
� Reasons for IPLing

Key terms in this section

HCD IODF SYSRES

SMP/E linklist IPL

WTOR PARMLIB PROCLIB

system symbol PSA LPA

nucleus LOADPARM SQA

system library
 Chapter 1. Overview of system programming 39

40 z/OS Basics

Chapter 2. Using SMP/E

Objective: As a z/OS system programmer, you will need to manage changes to the
system software. You must ensure that software products and their modifications,
service levels or fixes are properly installed at a specific level so that their interfaces
and elements can work together with the operating system. As more products integrate
and the system is enhanced, so, too, does the complexity of monitoring the elements
of the system increase. This is an extremely vital and critical role.

After completing this topic, you will be able to:
� Explain how proper installation and maintenance are the basis for high availability

in the z/OS environment.

2

© Copyright IBM Corp. 2005. All rights reserved. 41

2.1 What is SMP/E?
SMP/E is the basic tool for installing and maintaining software on z/OS and its related
subsystems and middleware. It controls these changes at the component level by:
� Selecting the proper level of code to be installed from a large number of potential

changes keeping the product software consistent
� Calling system utility programs to install the changes
� Keeping records of the installed changes by providing a facility to enable you to

inquire on the status of your software and to reverse the change if necessary.
� All code and its modifications are located in the SMP/E database called the

Consolidated Software Inventory (CSI) made up of one or more VSAM data sets.
� This function protects the integrity of the software.

SMP/E can be run either using batch jobs or using dialogues under Interactive System
Productivity Facility/Program Development Facility (ISPF/PDF). SMP/E dialogs help
you interactively query the SMP/E database, as well as create and submit jobs to process
SMP/E commands.

2.2 The SMP/E view of the system
The z/OS system overall view may appear to be one big block of code that drives the
CPU. Although, z/OS and previous versions are highly complex comprising many
different smaller blocks of code. Each of those smaller blocks of code perform a specific
function within the system.

Each system function is composed of one ore more load modules. In a z/OS environment,
a load module represents the basic unit of machine-readable execution code (Operation
Code). Load modules are created by combining one or more object modules and

RACF DB2 MVS CICS

ISPF TSO SMP/E EREP MQ

JES RMF HTTP IMS VTAM

WAS Netview DFSMS PSF RRS

RACF DB2 MVS CICS

ISPF TSO SMP/E EREP MQ

JES RMF HTTP IMS VTAM

WAS Netview DFSMS PSF RRS
42 z/OS Basics

processing them with a link-edit utility. The link-editing of modules is a process that
resolves external references (called routines) and addresses. The functions on your
system, therefore are one or more object modules that have been combined and link-
edited.

To examine where the object module comes from, let’s take a look at this example:

At most times, object modules are sent to you as part of a product. In the above example,
the object module MOD1 was sent as part of a product. Other times, you may need to
assemble source code sent to you by the product packagers to create the object module.
You can modify the source code and then assemble it to produce an object module. In this
example SRCMOD2 is source code that you assemble to create object module MOD2.
When assembled, you link edit object module MOD2 with object module MOD1 to
create the load module LMOD1.

In addition, to object modules and source code, most products distribute many additional
parts such as macros, help-panels, CLISTs and other z/OS library members. These
modules, macros and other types of data and code are the basic building blocks of your
system. All of these building blocks are called elements. They also describes the
relationship the software has with other products or services that may be installed on the
same z/OS system.
 Chapter 2. Using SMP/E 43

2.3 Changing system elements
Over time, you may need to change some of the elements of your system. These changes
may be necessary to improve the usability or reliability of a product. You may want to
add some new functions to your system, upgrade some of the elements of the system, or
modify some elements for a variety of reasons. In all cases, you are making system
modifications. In SMP/E, we refer to these system modifications as SYSMODs.

A SYSMOD is the actual package containing information SMP/E needs to install and
track system modifications. SYSMOD are composed of two parts:
� Modification Control Statement (MCS) designated by ++ as the first two characters,

that tells SMP/E:
• What elements are being updated or replaced
• How the SYSMOD relates to product software and other SYSMODs
• Other specific installation information

� The Modification Text which is the object modules, macros and other elements
supplied by the SYSMOD.

There are four different categories of SYSMODs, each supporting a task you might want
to perform:
� Function SYSMOD - Introduce the element for a product
� PTF SYSMOD (program temporary fix) - Prevent or fix problems with an element or

introducing a new element.
� APAR SYSMOD (authorized program analysis report) - Fix problems with an

element.
� USERMOD SYSMOD (user modification) - Customize an element.

2.4 Introducing an element into the system

One way you can modify your system is to introduce new elements into that system. To
accomplish this with SMP/E, you can install a function SYSMOD. The function
SYMOD introduces a new product, a new version or release of a product, or updated
functions for an existing product into the system.

Important: All other types of SYSMODs are dependent upon the function
SYSMOD, because they are all modifications of the elements originally introduced by
the function SYSMOD.
44 z/OS Basics

When we refer to installing a function SYSMOD, we are referring to the placing of all
product’s elements in the system data sets, or libraries. Examples of these libraries are
SYS1.LINKLIB, SYS1.LPALIB and SVCLIB. The figure below displays the process of
creating executable code in the production system libraries.
example

The above figure shows the installation of a function SYSMOD links-edits object
modules MOD1, MOD2, MOD3 and MOD4 to create load module LMOD2. The
executable code created in load module LMOD2 is installed in the system libraries
through the installation of the function SYSMOD.

There are two types of function SYSMODs:
� A base function SYSMOD adds or replaces the entire system function
� A dependent function SYSMOD provides an addition to an existing system function.

It is called dependent because its installation depends upon a base function already
installed.

Both of these functions are used to introduce new elements into the system and below is
an example of a simple function SYSMOD that introduces four elements:
 Chapter 2. Using SMP/E 45

example

2.5 Preventing problems with an element
When a problem with a software element is discovered, IBM supplies its customers with
a tested fix for that problem. This will come in a form of a program temporary fix (PTF).
Although you may not have experienced the problem the PTF is intended to prevent, it is
wise to install the PTF on your system. The PTF SYSMOD is used to install the PTF,
thereby preventing the occurrence of that problem on your system.

Most PTFs are designed to update or replace one or more complete elements of a system
function. Here is a small example:

In the above diagram we see a previously installed load module, LMOD2. If we want to
replace the element MOD1, we should install a PTF SYSMOD that contains the module
46 z/OS Basics

MOD1. That PTF SYSMOD replaces the element in error with the corrected element. As
part of the installation of the PTF SYSMOD, SMP/E relinks LMOD2 to include the new
and corrected version of MOD1.

Here is an example of a simple PTF SYSMOD:

PTF SYSMODs are always dependent upon the installation of a function SYSMOD. In
some cases, some PTF SYSMODs may also be dependent upon the installation of other
PTF SYSMODs. These dependencies are called prerequisites. We will look at the typical
PTF prerequisite when we discuss the complexity of keeping track of the elements of the
system.

2.6 Fixing problems with an element
At times, you will find it necessary to correct a serious problem that occurs on your
system before a PTF is ready for distribution. Therefore, in this circumstance, IBM
supplies you with an authorized program analysis report (APAR). An APAR is a fix
designed to correct a specific area of an element or replace an element in error. You
install an APAR SYSMOD to implement a fix, therefore updating the incorrect element.

Note: From the above example we will describe Distribution Libraries later.
 Chapter 2. Using SMP/E 47

The processing of the APAR SYSMOD provides a modification for the object module
MOD2. During the installation of the APAR SYSMOD, MOD2 is updated (and
corrected) in LMOD2.

The APAR SYSMOD always has the installation of a function SYSMOD as a
prerequisite and can also be dependent upon the installation of other PTFs or APAR
SYSMODs.

2.7 Customizing an element - USERMOD SYSMOD
If you have a requirement for a product to perform differently than what it was intended
to, you can consider a customized element for that system. IBM provides certain modules
allowing you to adapt IBM code for your specific requirements. After you make the
desired modifications, you place these modules into your system by installing a
USERMOD SYSMOD. This SYSMOD can be used to replace or update an element or to
introduce a totally new written element into your system. In all circumstances, the
48 z/OS Basics

USERMOD SYSMOD is created by you either to modify IBM code or to add your own
code to the system.

Here we see that MOD3 has changed through a USERMOD SYSMOD.

Below is the example of a USERMOD SYSMOD

2.7.1 Prerequisites and corequisites
Again, a function SYSMOD is a prerequisites for APARs, PTFs and USERMODs.
Sometimes a PTF or even an APAR is dependent upon other PTF SYSMODs called

Note: For a USERMOD SYSMOD there might be a prerequisite for the installation of
a function SYSMOD and possibly the installation of other APARs, PTFs or
USERMOD SYSMODs.
 Chapter 2. Using SMP/E 49

corequisites. Here we begin to see the complexity of elements and SYSMOD
dependencies. In order to keep track of hundreds of modules in many system libraries we
finally now understand the need for SMP/E tooling. Keeping track of these components
and changes become very apparent when we examine the z/OS maintenance process
since you can see how a PTF can contain multiple elements to replace.

2.8 Tracking and controlling elements
The means for SMP/E to track and control elements successfully is to identify them
uniquely. This is where we use the modification identifiers and there are three types.
� Function Modification Identifiers (FMIDs) identify the function SYSMOD that

introduces the element into the system.
� Replacement Modification Identifiers (RMIDs) identify the last SYSMOD (in most

cases a PTF SYSMOD) to replace an element.
� Update Modification Identifiers (UMIDs) which identifies the SYSMOD that an

update to an element since it was last replaced.

2.9 Working with SMP/E
The SMP/E process is performed by three simple basic commands, (RECEIVE, APPLY,
ACCCEPT). Before we explore these command we will look at Libraries that are used to
implement the process. There are two types of libraries. The Distribution and Target
Libraries.

The Distribution Libraries (DLIBs) contains all the elements used for input and is also
used for backup. In the case of an error with a Production element, the element can be
replaced from these libraries.

The Target Libraries (TLIBs) contain all the executables required to run the system.

As mentioned earlier the Consolidated Software Inventory (CSI) is where SMP/E keeps
track of SYSMODs composed of one or more VSAM KSDS data sets. These are divided
into zones that contain groupings of records or their installation status describing the
SYSMOD and their associated elements called entities.

The elements found in the distribution libraries are contained in the distribution zone and
entry elements found in the target libraries are contained in the target zone. In addition to
these zones the CSI contains a global zone.

The Global Zone provides:
� The options found for SMP/E processing
50 z/OS Basics

� Status information for all SYSMODs in process
� Entries required to identify and describe each Target and Distribution zone
� Special exception handling for SYSMOD in error.

The exception data handling is very important. It is referred to as HOLDDATA and is usu-
ally supplied for a product to indicate that the SYSMOD should not be processed or held
for installation. In these cases the cause can be:

• Performing some action before installing the SYSMOD (USER HOLD)
• The PTF is in error and awaiting correction (ERROR HOLD)
• The system needs to perform an action before it is installed (SYSTEM HOLD)

All the information located in the Global Zone, combined with the information found in
the Target and Distribution Zones make up the data SMP/E requires to install and track
the system’s software. It contain a great deal of information. All this information can be
displayed using:
� The LIST command creating a hard copy which lists information about the system
� REPORT command which checks, compares, and also generates a hardcopy of the

information about zone content
� QUERY Dialogues via ISPF
� SMP/E CSI API which can be used to write application programs to query the content

of the system.

2.9.1 SMP/E basic commands

RECEIVE
The RECEIVE process is used to take a SYSMOD which is outside of SMP/E and stage
them into the SMP/E Library domain which begins to construct the CSI entries that

CSI
Distribution

Zone

CSI
Global
Zone

CSI
Target
Zone

TLIBs DLIBs

CSI
Distribution

Zone

CSI
Global
Zone

CSI
Target
Zone

TLIBs DLIBs
 Chapter 2. Using SMP/E 51

describe them. This allows them to be queried for input into later processes. More
recently the source can be electronic from a web site, although usually it comes from a
tape or even a third party vendor media.

This process’s role accomplishes several tasks:
� Constructs entries in the Global Zone for describing the SYSMOD
� Ensuring the SYSMOD is valid such as the syntax for modification control

statements (MCS) associated to the products installed in the CSI
� Installing the SYSMOD into the libraries. As an example the PTF temporary store

library.
� Assessing the HOLDDATA to ensure errors are not introduced.

During the RECEIVE processing the MCS for each SYSMOD is copied to an SMP/E
temporary storage area called the SMPPTS data set containing the inline element
replacement or update for that SYSMOD.

SMP/E updates the global zone with information about the SYSMODs that is has
received:

Note: There are also RELFILEs which package the elements in relative files that are
separate from MCSs which are mostly used by function SYSMODs. Relative files are
stored in another temporary storage area called SMPTLIB data sets.
52 z/OS Basics

Figure 2-1

In the course of maintaining the system, you need to install service and process the
related HOLDDATA. Assume IBM has supplied you with a service tape (such as a
CBPDO or ESO tape) and you want to install it on the system. The first step is to receive
the SYSMODs and HOLDDATA that are contained on the tape by:

SET BDY(GLOBAL)
RECEIVE

Use of these commands, SMP/E receives all the SYSMODs and HOLDDATA on the
tape.

In order to RECEIVE only SYSMODs for installation into the Global Zone:
SET BDY(GLOBAL)
RECEIVE SYSMODS

Note: To RECEIVE only HOLDDATA that may require special handling or that are in
error you can use this command. It is important that you receive HOLDDATA into
SMP/Es repository as soon as possible.

SET BDY(GLOBAL)
RECEIVE HOLDDATA

SMPPTS
MCS Entries

Global Zone
SYSMOD ENTRIES
HOLDDATA ENTRIES

SMPTLIB
RELATIVE FILES

web
site R

E
C
E
I

V
E

Target
Libraries

Target
Zone

Distribution
Libraries

Distribution
Zone

SMPPTS
MCS Entries

Global Zone
SYSMOD ENTRIES
HOLDDATA ENTRIES

SMPTLIB
RELATIVE FILES

web
site R

E
C
E
I

V
E

Target
Libraries

Target
Zone

Distribution
Libraries

Distribution
Zone
 Chapter 2. Using SMP/E 53

For SYSMODs for a specific product (for example, WebSphere Application Server for
z/OS) including HOLDDATA:

SET BDY(GLOBAL)
RECEIVE FORFMID(H28W500)

APPLY
The APPLY process instructs SMP/E which of the received SYSMODs are to be selected
for installation in the target libraries (TLIBs). SMP/E also ensures that all other required
SYSMODs (prerequisites) have been installed or are being installed concurrently as well
as in the proper sequence. The source of the elements is the SMPTLIB data sets, the
SMPPTS data set or indirect libraries depending on how is was packaged. This phase of
the SMP/E process entails:
� Executing the appropriate utility to install the SYSMOD into the target library

depending on the type of input text supplied and target module being changed.
� Ensuring the relationship of the new SYSMOD is correct with other SYSMODs in

the target zone.
� The CSI is modified displaying the updated modules.

The Target zone reflects the content of the target libraries so therefore, after the utility is
completed and zone updated it will accurately reflect the status of those libraries.

Important: The APPLY command updates the system libraries and should be
carefully used on a live Production System. We recommend to initially use a copy of
the Production Target Libraries and Zones.
54 z/OS Basics

The APPLY processing is where the target zone is accurately updated:
� All SYSMOD entries in the Global Zone are updated to reflect that the SYSMOD has

been applied to the target zone
� The target zone accurately reflects each SYSMOD entry applied. Element entries

(such as MOD and LMOD) are also created in the target zone.
� BACKUP entries are created in the SMPSCDS data set to the SYSMOD can be

restored, if at all necessary.

Similar to the RECEIVE process the APPLY command has many different operands for
flexibility to select SYSMODs you would like to see for installation in the target libraries
and provides an assortment of output. The directives used instruct SMP/E what you want
installed.

To install only PTF SYSMODs:
SET BDY(ZOSTGT1)
APPLY PTFS.

In order to select PTF SYSMODs, you name them in the directives:

Target
Libraries

Target
Zone

SMPPTS

Global Zone
SYSMOD ENTRIES

Updated !

SMPTLIB

Distribution
Libraries

Distribution
Zone

{A
P
P
L
Y

SYSMODs Entries
ELEMENTs Created

Target
Libraries

Target
Zone

SMPPTS

Global Zone
SYSMOD ENTRIES

Updated !

SMPTLIB

SMPPTS

Global Zone
SYSMOD ENTRIES

Updated !

SMPTLIB

Distribution
Libraries

Distribution
Zone

{A
P
P
L
Y

A
P
P
L
Y

SYSMODs Entries
ELEMENTs Created
 Chapter 2. Using SMP/E 55

SET BDY(ZOSTGT1)
APPLY SELECT(UZ00001, UZ00002).

In some instances you may only want to install just corrective fixes (APARS) or user
modifications (USERMODs) into the target library:

SET BDY(ZOSTGT1)
APPLY APARS

USERMODS.

In other instances you may want to update a selected product from a distribution tape:
SET BDY(ZOSTGT1).
APPLY PTFS

FORFMID(H28W500).

or

SET BDY (ZOSTGT1).
APPLY FORFMID(H28W500).

Using APPLY CHECK
There may be times when you want to see which SYSMODs are included before you
actually install them. You can do this with the CHECK operand by entering commands
such as the following:
SET BDY(MVSTGT1)
APPLY PTFS
APARS
FORFMID(HOP
1)GROUPEXTEND CHECK

After these commands are processed, you can check the SYSMOD Status report to see
which SYSMODs would have been installed if you had not specified the CHECK
operand. If you are satisfied with the results of this trial run, you can enter the commands
again, without the CHECK operand, to actually install the SYSMODs.

ACCEPT
Once the SYSMOD has been installed into its Target library and “tested” it then is
ACCEPTed. This step is very similar to the APPLY that is taking the selected SYSMODs
and installing them into the associated Distribution libraries. You specify operands on the
ACCEPT command that tell SMP/E which of the received SYSMODs are to be selected
for installation. During this phase SMP/E also ensures that the correct functional level of
each element is selected.

Attention: In the two cases above, SMP/E applies all applicable PTFs for the FMID.
Unless you specify otherwise, PTFs are the default SYSMOD type.
56 z/OS Basics

The ACCEPT performs the follow tasks:
� CSI entries are updated with the targeted elements in the Distribution Zone.
� The targeted elements are either rebuilt or created in the Distribution libraries using

the content of the SYSMOD as input depending on the utility
� Similar to the APPLY, it will verify the Target Zone CSI entries for the affected

modules and SYSMODs ensuring they are consistent with the library content
� Performs housekeeping of obsolete or expired elements. It will delete the Global

Zone CSI entries, PTS members and SMPTLIBs for those SYSMODs affected. As an
example Global zone SYSMOD entries and MCS statements in the SMPPTS data set
are deleted for those SYSMODs that have been accepted into the Distribution zone.

Important: There is a “stop” ACCEPT processing that SMP/E provides so you can
ensure all prerequisites are satisfied before the installation of the SYSMODs. This is s
check for you to see what will happen (assist you in detecting problems) without
actually modifying the Distribution libraries.

Note: If you wish that SMP/E does not perform the Global zone clean up, you
have the option to indicate this and the information is saved.
 Chapter 2. Using SMP/E 57

Figure 2-2

After applying the SYSMODs into the Target zone, you can then tell SMP/E to install
only the eligible PTF SYSMODs into the Distribution zone:

SET BDY(ZOSDLB1).
ACCEPT PTFS.

To install PTF SYSMODS selecting the particular ones:
SET BDY(ZOSDLB1)
ACCEPT SELECT(UZ00001,UZ00002).

Important: Should the SYSMOD be in error, do not ACCEPT it. By using the
RESTORE process that takes the modules updated by the selected SYSMOD and
rebuilds the copies in the Target libraries from the specific modules in the Distribution
libraries as input. Also the RESTORE updates the Target zone CSI entries to reflect
the removal of the SYSMOD. When ACCEPT processing is completed, there is no
way it can be backed out, therefore the changes are permanent.

SMPPTS
MCS Entries
“deleted”

Global Zone
SYSMOD ENTRIES

“deleted”

SMPTLIB
RELATIVE FILES

Target
Libraries

Target
Zone

Distribution
Libraries

Distribution
Zone

SYSMOD Entries
Element Entries

“created”

A
C
C
E
P
T

}SMPPTS
MCS Entries
“deleted”

Global Zone
SYSMOD ENTRIES

“deleted”

SMPTLIB
RELATIVE FILES

Target
Libraries

Target
Zone

Distribution
Libraries

Distribution
Zone

SYSMOD Entries
Element Entries

“created”

Distribution
Libraries

Distribution
Zone

SYSMOD Entries
Element Entries

“created”

A
C
C
E
P
T

}

58 z/OS Basics

There are situations where you may want to update a particular product with all
SYSMODs:

SET BDY(ZOSDLB1)
ACCEPT PTFS

FORFMID(H28W500).

or

SET BDY(ZOSDLB1)
ACCEPT FORFMID(H28W500).

ACCEPTING Prerequisite SYSMODs
When installing a SYSMOD, you may not know if it has prerequisites. SOmetime an
ERROR SYSMOD is held). In these situations, you can direct SMP/E to check whether
an equivalent (or superseding) SYSMOD is available by specifying the
GROUPEXTEND operand:

SET BDY(ZOSDLB1).
ACCEPT PTFS

FORFMID(H28W500)
GROUPEXTEND.

A good way to see which SYSMODs are included before you actually install them is by
using the CHECK operand:

SET BDY(ZOSTGT1).
ACCEPT PTFS

FORMFMID(H28W500)
GROUPEXTEND
CHECK.

ACCEPT Reporting
When this last phase is completed., these reports will assist you to assess the results:
� SYSMOD Status Report - provides a summary of the processing that took place for

each SYSMOD, based on the operands you specified on the ACCEPT command.
� Element Summary Report - provides you with a detailed look at each element

affected by the ACCEPT processing and which libraries installed

Note: The the two cases above, SMP/E accepts all applicable PTFs for the product
whose FMID is H28W500 located in the Distribution zone ZOSDLB1.

Note: If SMP/E can not find a required SYSMOD, it looks for and uses a
SYSMOD that supersedes the required one.
 Chapter 2. Using SMP/E 59

� Causer SYSMOD Summary Report - provides a list of SYSMODs which caused
other SYSMODs to fail and descries the errors that must be fixed in order to be
successfully processed.

� File Allocation Report - provides a list of the data sets used for the ACCEPT
processing and supplies information about these data sets.

Overall SMP/E process flow

Figure 2-3

CSI
Distribution

Zone

CSI
Global
Zone

CSI
Target
Zone

TLIBs DLIBs
SMPTLIBs

PTS

RECEIVE APPLY
ACCEPT

RESTORE

CSI
Distribution

Zone

CSI
Global
Zone

CSI
Target
Zone

TLIBs DLIBs
SMPTLIBs

PTS

RECEIVE APPLY
ACCEPT

RESTORE
60 z/OS Basics

Example of CSI VSAM Cluster Definition

Figure 2-4
 Chapter 2. Using SMP/E 61

SMP batch Job example

Figure 2-5

New section starts here:

2.10 When is SMP/E used?
The system programmer responsibilities include base z/OS and IBM software product
problem determination and resolution. When a problem is reported, the system
programmer must determine whether the problem is the result of local customization or
the problem is with IBM code. The systems programmer will call IBM defect support
when IBM code is suspect. Typically, defect support will recommend a fix for the
system. The systems programmer would use SMP/E to verify the status of this fix on the
system. If the fix is absent, then SMP/E would be used to ‘receive’ and ‘apply’ the fix.
62 z/OS Basics

To avoid problems, the systems programmer should routinely apply the latest collection
of fixes to the base z/OS and other IBM software products. The most aggressive schedule
would be monthly, however, it is common for this schedule to be quarterly or
semi-annual.

A new or modified business application might expose an IBM code defect. When this
occurs, IBM defect support would provide the systems programmer a fix to apply. The
fix may require pre-requisite fixes. This can be time consuming and you, the systems
programmer, are on a visible critical path. It can bring a significant amount of negative
attention. Applying routine maintenance to the system can avoid this situation.

It is in the best interest of the business and the systems programmer to reduce the amount
of time required to resolve a code defect which surfaced in your business production
environment. A suggested fix may already be applied, therefore, it is immediately known
that the problem has not been adequately identified. The best system programmers plan
and execute activities which keep them from being on the critical path of processing
mission critical business workload, installation of new equipment and business
opportunities made possible by exploiting previously unused software feature and
functions.

2.11 Why is SMP/E used?
SMP/E provides an excellent inventory, cross-reference of software dependencies and
mechanism for applying software maintenance. This insures integrity of the overall
system. The mechanics of using SMP/E to maintain a system can be quite simple and
easy. How SMP/E works and the knowledge needed to package fixes and software
products for SMP/E is significantly complex. IBM provides instructions to follow with
all SMP/E packaged fixes, software upgrades and products. The system programmer
follows the instructions shipped with the fix, upgrade or product.

2.12 Terminology
As is the case with many technical, scientific and medical disciplines, terminology is the
key to describing, understanding and being skilled with a specific discipline. SMP/E falls
into this category. We will briefly discuss SMP/E specific terminology, then how a
system programmer uses SMP/E. Reference Figure 2-6 on page 2-67 as you read through
this terminology section.

2.12.1 Communicating with IBM Defect Support
Defect support will typically recommend a ‘PTF’ to fix a problem. The system
programmer would use SMP/E to determine absence or presence of the ‘PTF’ which is
 Chapter 2. Using SMP/E 63

uniquely identified by a seven digit alphanumeric string such as UQ80526. A ‘PTF’ falls
into an SMP/E classification called ‘SYSMOD’. If the problem is identified as a newly
reported IBM code defect with no code fix, then IBM opens an ‘APAR’.
� PTF - Program Temporary Fix

When a problem with a software element is discovered, IBM supplies its customers
with a tested fix for that problem. This fix comes in the form of a program temporary
fix (PTF). Although you may not have experienced the problem the PTF is intended
to prevent, it is wise to install the PTF on your system. The PTF SYSMOD is used to
install the PTF, thereby preventing the occurrence of that problem on your system.
Usually, PTFs are designed to replace or update one or more complete elements of a
system function.

� APAR - Authorized Program Analysis Report

In critical situations, a code fix or problem bypass will be provided in the form of an
APAR fix. The code will then be officially tested and made generally available in the
form of a PTF. The APAR fix would, then be replaced by the PTF.

� SYSMOD - System Modification

Software, whether it is a product or service, consists of elements such as macros,
modules, source, and other types of data (such as CLISTs or sample procedures). For
software to be installed by SMP/E, it must include control information (SMP/E
instructions) for the elements. The combination of elements and control information
is called a system modification, or SYSMOD. PTFs and APARs are both
SYSMODs

Defect support may inquire about your systems ‘PUT level’ before starting, so they have
a general idea which PTFs are applied. The system programmer should be able to use
SMP/E to determine the PUT level immediately.
� PUT level - Program Update Tape

Approximately once a month, IBM makes an accumulation of the latest PTFs
available on tape. Applying this accumulation of PTFs is called a PUT level update.
Generally, PUT levels are in the form of YYMM such as PUT0409, September 2004.
However, it is possible that PUT levels will skip a couple months during the year.
When this occurs, PUT0409, represents the 9th PUT level during 2004. Defect
support will know how to interpret the meaning of the PUT level you provide.

2.12.2 Consolidate Software Inventory (CSI) and zones
SMP/E is a collection of data sets (aka libraries) which are all inter related. This
collection of data sets includes the ‘target’ libraries which are used to load and run the
system. When the system is initially installed, the target libraries are created from a copy
of the ‘distribution’ libraries. PUT levels and PTFs will are ‘APPLIED’ to the target
libraries. Once a system programmer is confident the PTFs or PUT level will not need to
64 z/OS Basics

be backed out of the system, this software maintenance will be ‘ACCEPTED’ into the
distribution libraries. The collection of target libraries is given a ‘Target Zone’ name and
the collection of distribution libraries is given a ‘Distribution Zone’ name.
� Target Zone

A name given to the collection of all elements (modules, macros, source, ISPF panels,
etc.) used to maintain and run the system. The SMP/E command to update the target
zone is APPLY.

� Distribution Zone

A name given to a collection of all elements (modules, macros, source, ISPF panels,
etc.) used for initial system build, then used to restore elements resulting from a back
out of elements applied to the target zone. The SMP/E command to update
(permanently commit) changes to the distribution zone is ACCEPT.

Before software maintenance can be applied to the target zone, the software maintenance
must be ‘RECEIVED’ in the Global Zone. As you might expect with a name like
global, it has a significant amount of information related to the subordinate target and
distribution zones, however, it is not directly involved in the operational system.
� Global Zone

A name given to data sets and records within those data sets used for updating and
tracking status of previous updates to the target and distribution zones as well as the
location used to ‘receive’ maintenance. The global zone also contains information
that (1) enables SMP/E to access target and distribution zones, and (2) enables you to
tailor aspects of SMP/E processing.

SMP/E uses ‘CSIs’ to keep records of the system. The CSI includes everything we just
read about in this terminology section.
� CSI - Consolidated Software Inventory

The CSI keeps track of all elements found in the aggregate of global, target and
distribution libraries or zones.

2.12.3 Maintenance
Before or during SMP/E execution to receive maintenance, it is best to apply the
‘HOLDDATA’. The holddata will identify new list of ‘PE’ PTFs, changes to
pre-requisite dependencies, comments, documentation changes and actions required as a
result of applying specific PTFs.
� PE - PTF in Error

Any code or elements applied via PTF packaging found to have a problem is marked
with a PE status. The code and elements associated with a PE PTF will not be applied.

� HOLDDATA
 Chapter 2. Using SMP/E 65

By receiving the HOLDDATA as soon as possible, you make sure SMP/E has the
most current information available. Therefore, if you try to install any PTF in
response to a problem on your system and that PTF is in error, SMP/E knows this and
warns you so you can weigh the effect of installing the known problem against the
effect of fixing the problem you have encountered. Several different HOLD reasons
exists:

• Performing some action before installing the SYSMOD (USER HOLD)
• The PTF is in error and awaiting correction (ERROR HOLD)
• The system needs to perform an action before it is installed (SYSTEM HOLD)

Once the maintenance is successfully received and all USER and SYSTEM HOLDs are
addressed, then the elements embedded in this PTF or PUT level maintenance is applied
to the target libraries. SMP/E JCL does not explicitly have DD statements for each target
library because it is not practical. SMP/E makes use of DDDEFs located in the CSI
instead of having JCL DD statement coded for each and every target library.
� DDDEF - DDname Definition

The SMP/E instructions include a ddname as the storage location for new elements or
updated elements. SMP/E maintains a list of DDDEF entries which include the
ddname with associated data set name or HFS file. This DDDEF entry is used to
resolve the ddname allocation request.
66 z/OS Basics

Figure 2-6 Flow of SMP SYSMOD Processing

SMP/E ‘Service’ is a term inclusive of APARs, PTFs, PUT Levels, PE PTFs and
HOLDDATA. Service can be obtained electronically via the intranet. SMP/E ‘CBPDO’
is a full product update. IBM also packages a complete operating system with selected
products pre-installed for installation without the need to use SMP/E. This is called a
ServerPac.

2.13 Local SMP/E Environments

2.13.1 Production, Test and Emergency Fix
It is common and recommended that fixes never be applied directly to a production
system. A typical SMP/E environment may consists of three mutually exclusive copies of
the SMP/E libraries that contain the software used by the z/OS system. All three copies
will be identical initially. The three SMP/E environments are needed for 1) the
production system, 2) a test system containing the next scheduled update of all newly
identified fixes, and 3) a mirror copy of the production SMP/E libraries to receive,
 Chapter 2. Using SMP/E 67

apply and test an emergency fix before introducing the fix into the production
environment.

2.13.2 Base z/OS and Product CSIs
It is common and recommended to define an SMP/E CSI environment for the base z/OS
and separate SMP/E CSI environments for each product. The base z/OS and optional
products typically are shipped with instructions and JCL to define the SMP/E CSI for
each individually. Creating a separate SMP/E CSI for a new product install is a matter of
following instructions and submitting JCL provided with the product.

2.14 How to use SMP/E
SMP/E can be run either using batch jobs or using dialogues under Interactive System
Productivity Facility (ISPF). SMP/E dialogues help you interactively query the SMP/E
database, as well as create and submit jobs to process SMP/E commands. Batch facilities
are best for receiving, applying and accepting maintenance while ISPF facilities are best
to use while working with IBM defect support to answer questions about software levels
and presence or absence of specific PTFs. We will first discuss submitting SMP/E JCL
and commands in batch, then SMP/E from ISPF.

2.14.1 SYSMOD
A SYSMOD is the actual package containing instructions SMP/E needs to install and
track system modifications. SYSMOD are composed of two parts:
� Modification Control Statement (MCS) designated by ++ as the first two characters,

that tells SMP/E:
• What elements are being updated or replaced
• How the SYSMOD relates to product software and other SYSMODs
• Other specific installation information

Maintenance and products can be installed without coding any MCS statements. The
MCS statements are created by whoever packaged the maintenance or product. SMP/E
‘commands’ are used to tell the SMP/E program where to locate and read these MCS
instructions packaged with the system elements. You may frequently see SYSMOD and
PTF used interchangeably, however, there is a difference. PTF is the most common type
of SYSMOD.
68 z/OS Basics

2.14.2 JCL
The SMP/E JCL and commands are very simple as a result of all the target, distribution
and work data sets allocation using DDDEF entries. The JCL below could be used to
receive sysmods and holddata into the MVS global zone.

//SMPJCL EXEC PGM=GIMSMP,
// PARM='CSI=MVS.GLOBAL.CSI'
//SMPPTFIN DD DSN=
//SMPHOLD DD DSN=
//SMPLOG DD SYSOUT=*
//SMPCNTL DD *

SET BOUNDARY(GLOBAL).
RECEIVE.

The SMP/E program, GIMSMP, is passed the name of the data set which is the global
CSI, MVS.GLOBAL.CSI in this case. The SMP/E program needs several input and
output ddnames. SMP/E will expect to read instructions and sysmods from the data set
name associated with SMPPTFIN ddname and it will expect to read holddata from data
set name associated with SMPHOLD ddname. SMP/E will write its message to
SMPLOG ddname. SMPCNTL provides the SMP/E its commands. The SET command
tells SMP/E which zone that the following commands are directed. In this case SMP/E is
told the following commands are intended for the global zone.

2.14.3 RECEIVE Command
The RECEIVE command directed to the global zone will 1) read sysmods with
instructions, 2) read holddata, 3) write holddata and sysmods with instructions to
SMPPTS DDDEF data set 4) write SMP/E messages and 5) update the global data set
with information about what it received. When completed, the global data set will show
date, time and status for each sysmod successfully received.

2.14.4 APPLY Command
The only input and output hardcoded JCL ddnames used to APPLY sysmods is the
SMPCNTL which provides SMP/E program its commands and ddname to write
messages. The SET BOUNDRY command is directing following commands to MVST
target zone. The target zone name is arbitrarily chosen by the system programmer.

//APPLY EXEC PGM=GIMSMP,
// PARM='CSI=MVS.GLOBAL.CSI'
//SYSPRINT DD SYSOUT=*
//SMPLOG DD SYSOUT=*
//SMPCNTL DD *
 SET BOUNDARY(MVST).
 APPLY SELECT(UW85091,UW85613)
 GROUPEXTEND COMPRESS(ALL)
 Chapter 2. Using SMP/E 69

 BYPASS(HOLDSYSTEM) CHECK.

The above APPLY command will 1) take ‘selected’ sysmods from the global zone
SMPPTS data set, 2) read the instructions and elements packaged in the sysmods and 3)
execute the instructions which will result in adding, replacing and modifying elements in
the target libraries. Several operands are present on the APPLY command. Specific PTF
sysmods are SELECTed to be applied. The GROUPEXTEND operand tells the program
to include any required prerequisite or corequisite sysmods that have been received but
not specifically selected. COMPRESS(ALL) tells the program to regain unused space in
a target library when needed. BYPASS(HOLDSYSTEM) tells the program that the
system programmer has taken all specified system actions included as comments on the
specific sysmods in SYSTEM HOLD status. CHECK tells the program this is a trial run
and please produce messages that would indicate probably of failure or success once the
CHECK is removed.

ISPF

2.14.5 ACCEPT Command
Once the system programmer is confident the applied sysmods will not be backed out,
the same JCL used to APPLY is used to permanently ACCEPT the changes. Again, in
this case ACCEPT commands is directed to the distribution zone with a given name,
MVSD.

SET BOUNDARY(MVSD)
ACCEPT SELECT(UW85091,UW85613).

2.14.6 LIST Command
The same JCL used for APPLY processing can be used. The LIST command can be
directed to the global, target or distribution zone to produce a listing of all known PTFs,
selective PTFs along with their status (receive, applied, superseded and accepted) or
DDDEFs, etc. An example to list a single PTF (UW85091), list all PTFs and list all
DDDEF entries in the target zone (MVST) follows.

SET BOUNDARY(MVST).
LIST SYSMODS(UW85091).
LIST SYSMODS.
LIST DDDEF.

2.15 ISPF
Using ISPF SMP/E Panels is the best method to use when working with defect
support....to answer questions about existing maintenance levels and to determine
whether or not a PTF or SYSMOD is applied.
70 z/OS Basics

Figure 2-7 on page 2-71 is an example of the SMP/E Primary Option Menu. Tutorial and
PF1 help panels exist in this ISPF application.

Figure 2-7 SMP/E Primary Option Menu

IBM PTF packaging instructions typically associate a PTF number with a PUT level. The
PUT levels are given ‘SOURCEIDs’ names such as PUT0403. Therefore, if asked what
PUT is the latest PUT level for the base z/OS or an option software product, a
‘SOURCEID’ query will help provide that information. Figure 2-8 on page 2-71 selects
sourceid and Figure 2-9 on page 2-72 requests a zone to be selected for the sourceid
query. When working with IBM defect support, you want to always select the target
zone.

Figure 2-8 SourceID Query Selection - Location of PUT level information
 Chapter 2. Using SMP/E 71

Figure 2-9 Query PUT levels within target zone

All SOURCEID PUT levels will be displayed among any other SOURCEIDs used by
you are within SMP/E packaging. Selecting a PUT level, Figure 2-10 on page 2-72, will
display all the PTFs included in the PUT level. In this example, approximately 20 PTFs
are in the March 2004 PUT level. The latest SOURCEID PUT levels are may not include
all PTFs released for that PUT level. Applying an emergency fix may result in the PUT
level SOURCEID addition in the CSI because it is the PUT level associated with the PTF.
The PUT level SOURCEID would be fully populated with all PTFs in the PUT level
when routine maintenance is completed.

If any one of the PTFs from SOURCEID PUT0403, Figure 2-11 on page 2-73, then
details about the individual PTF will be displayed, such as status with date and time
applied, Figure 2-12 on page 2-73.

Figure 2-10 PUT Levels - Select PUT0403 Level - for included PTFs
72 z/OS Basics

Figure 2-11 List of PTFs within PUT level - Select a specific PTF from the PUT level

Figure 2-12 SYSMOD(PTF) status info within PUT Level
 Chapter 2. Using SMP/E 73

A SYSMOD (PTF) can be queried directly for the SMP/E Primary Option Menu. After
‘Query’ is selected from the Primary Menu, then the ‘zone’ (MVST), the type of entry
(SYSMOD) and specific SYSMOD(PTF) number can be entered to display the details.
Figure 2-13 on page 2-74

Figure 2-13 Query SYSMOD(PTF) directly w/o going through SourceID panels

2.16 Order and download IBM fixes
While collections of PTFs are typically received from Product Update Tape, PUT, and
entire product updates are typically received from tape, CBPDO, emergency fixes can be
ordered and download over the Internet. The order and download can typically be
completed in 15 minutes.

https://techsupport.services.ibm.com/server/login is an IBM web site, used by system
programmers. Any system programmer can register to order and download fixes. The
download includes instructions. This web site is used to order z/OS, AIX, and OS/400
fixes. The web site for all IBM servers.

2.17 Summary
A critical responsibility of the system programmer is to work with IBM defect support
when a problem surfaces in z/OS or option IBM products. Problem resolution will
require the system programmer to receive and apply fixes to the enterprise system.

The SMP/E JCL and commands will be used frequently by a large enterprise z/OS
system programmer, however, SMP/E MCS instructions will rarely be coded by the same
74 z/OS Basics

system programmer. The product and SYSMOD packaging will include the necessary
MCS statements.
 Chapter 2. Using SMP/E 75

76 z/OS Basics

Chapter 3. Hardware systems and
LPARs

3

Objective: As a new z/OS system programmer, you will need to develop a thorough
understanding of the hardware that runs the z/OS operating system. z/OS is designed
to make full use of mainframe hardware and its many sophisticated peripheral
devices.

After completing this topic, you will be able to:
� Discuss S/360 and zSeries hardware design.
� Explain processing units and disk hardware.
� Explain how mainframes differ from PC systems in data encoding.
� List some typical hardware configurations.
© Copyright IBM Corp. 2005, 2006. All rights reserved. 77

3.1 Overview of mainframe hardware systems
This topic provides an overview of mainframe hardware systems, with most of the
emphasis on the processor “box.”

Related Reading: For detailed descriptions of the major facilities of z/Architecture, the
book z/Architecture Principles of Operation is the standard reference. You can find this
and other IBM publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Let’s begin this topic with a look at the terminology associated with mainframe
hardware. Being aware of various meanings of the terms systems, processors, CPs, and
so forth is important for your understanding of mainframe computers.

In the early S/360 days a system had a single processor, which was also known as the
central processing unit (CPU). The terms system, processor, and CPU were used
interchangeably. However, these terms became confusing when systems became
available with more than one processor. This is illustrated in Figure 3-1.

Figure 3-1 Terminology overlap

Processor and CPU can refer to either the complete system box, or to one of the
processors (CPUs) within the system box. Although the meaning may be clear from the
context of a discussion, even mainframe professionals must clarify which processor or

Individual processors in the
system

"processors"

"CPUs"

"engines"

"PUs"

"CPs"

IFLs, ICFs, zAAPs, IFLs
spares

"system" = CPs running an
operating system

System box from IBM
possibly a zSeries

machine

Sometimes referenced
as a "processor"

A few people use "CEC"

Many use "system"

Sometimes referenced
as a "CPU"
78 z/OS Basics

CPU meaning they are using in a discussion. IBM introduced the term CEC (central
electronic complex) to unambiguously refer to the “box.” However, this term is not
widely used.

Partitioning and some of the terms in Figure 3-1 are discussed later in this topic. Briefly,
all the S/390 or z/Architecture processors within a CEC are processing units (PUs).
When IBM delivers the CEC, the PUs are characterized as CPs (for normal work),
Integrated Facility for Linux (IFL), Integrated Coupling Facility (ICF) for Parallel
Sysplex configurations, and so forth.

In this text, we hope the meanings of system and processor are clear from the context. We
normally use system to indicate the hardware box, a complete hardware environment
(with I/O devices), or an operating environment (with software), depending on the
context. We normally use processor to mean a single processor (CP) within the CEC.

3.2 Early system design
The central processor box contains the processors, memory,1 control circuits, and
interfaces for channels. A channel provides an independent data and control path
between I/O devices and memory. Early systems had up to 16 channels; the largest
mainframe machines at the time of writing can have over 1000 channels.

Channels connect to control units. A control unit contains logic to work with a particular
type of I/O device. A control unit for a printer would have much different internal
circuitry and logic than a control unit for a tape drive, for example. Some control units
can have multiple channel connections providing multiple paths to the control unit and its
devices.

Control units connect to devices, such as disk drives, tape drives, communication
interfaces, and so forth. The division of circuitry and logic between a control unit and its
devices is not defined, but it is usually more economical to place most of the circuitry in
the control unit.

Figure 3-2 presents a conceptual diagram of a S/360 system. Current systems are not
connected as shown in Figure 3-2. However, this figure helps explain the background
terminology that permeates mainframe discussions.

1 Some S/360s had separate boxes for memory. However, this is a conceptual discussion and we ignore such
details.
 Chapter 3. Hardware systems and LPARs 79

Figure 3-2 Conceptual S/360

The channels in Figure 3-2 are parallel channels (also known as bus and tag channels,
named for the two heavy copper cables they use). A parallel channel can be connected to
a maximum of eight control units. Most control units can be connected to multiple
devices; the maximum depends on the particular control unit, but 16 is a typical number.

Each channel, control unit, and device has an address, expressed as a hexadecimal
number. The disk drive marked with an X in Figure 3-2 has address 132, derived as
shown in Figure 3-3.

Figure 3-3 Device address

00 33 00 11

Processors
Storage
Control

Main
Storage

11 55 66 AA BB

Control
Unit

3
Control

Unit
Control

Unit

3

11 22

55 33Channels

Devices

X

Y 00 11 Z

Control
Unit

C0
Communication

line

Parallel
Channels

AnotherAnother
SystemSystem

Address: 1 3 2

Channel number Control unit number Device number
80 z/OS Basics

The disk drive marked with a Y in the figure can be addressed as 171, 571, or 671
because it is connected through three channels. By convention the device is known by its
lowest address (171), but all three addresses could be used by the operating system to
access the disk drive. Multiple paths to a device are useful for performance and for
availability. When an application wants to access disk 171, the operating system will first
try channel 1. If it is busy (or not available), it will try channel 5, and so forth.

Figure 3-2 contains another S/360 system with two channels connected to control units
used by the first system. This sharing of I/O devices is common in all mainframe
installations. Tape drive Z is address A31 for the first system, but is address 331 for the
second system. Sharing devices, especially disk drives, is not a simple topic and there are
hardware and software techniques used by the operating system to control exposures
such as updating the same disk data at the same time from two independent systems.

As mentioned, current mainframes are not used exactly as shown in Figure 3-2 on
page 80. Differences include:

� Parallel channels are not available on the newest mainframes and are slowly being
displaced on older systems.

� Parallel channels have been replaced with ESCON (Enterprise Systems CONnection)
and FICON® (FIber CONnection) channels. These channels connect to only one
control unit or, more likely, are connected to a director (switch) and are optical fibers.

� Current mainframes have more than 16 channels and use two hexadecimal digits as
the channel portion of an address.

� Channels are generally known as CHPIDs (Channel Path Identifiers) or PCHIDs
(Physical Channel IDs) on later systems, although the term channel is also correct.
The channels are all integrated in the main processor box.

The device address seen by software is more correctly known as a device number
(although the term address is still widely used) and is indirectly related to the control unit
and device addresses.

3.3 Current design
Current CEC designs are considerably more complex than the early S/360 design. This
complexity includes many areas:

� I/O connectivity and configuration
� I/O operation
� Partitioning of the system
 Chapter 3. Hardware systems and LPARs 81

3.3.1 I/O connectivity
Figure 3-4 on page 83 illustrates a recent configuration. (A real system would have more
channels and I/O devices, but this figure illustrates key concepts.) Partitions, ESCON
channels, and FICON channels are described later.

Briefly, partitions create separate logical machines in the CEC. ESCON and FICON
channels are logically similar to parallel channels but they use fiber connections and
operate much faster. A modern system might have 100-200 channels or CHPIDs.2 Key
concepts partly illustrated here include the following:

� ESCON and FICON channels connect to only one device or one port on a switch.
� Most modern mainframes use switches between the channels and the control units.

The switches may be connected to several systems, sharing the control units and
some or all of its I/O devices across all the systems.

� CHPID addresses are two hexadecimal digits.
� Multiple partitions can sometimes share CHPIDs. Whether this is possible depends

on the nature of the control units used through the CHPIDs. In general, CHPIDs used
for disks can be shared.

� An I/O subsystem layer exists between the operating systems in partitions (or in the
basic machine if partitions are not used) and the CHPIDs.

An ESCON director or FICON switch is a sophisticated device that can sustain high data
rates through many connections. (A large director might have 200 connections, for
example, and all of these can be passing data at the same time.) The director or switch
must keep track of which CHPID (and partition) initiated which I/O operation so that
data and status information is returned to the right place. Multiple I/O requests, from
multiple CHPIDs attached to multiple partitions on multiple systems, can be in progress
through a single control unit.

The I/O control layer uses a control file known as an IOCDS (I/O Control Data Set) that
translates physical I/O addresses (composed of CHPID numbers, switch port numbers,
control unit addresses, and unit addresses) into device numbers that are used by the
operating system software to access devices. This is loaded into the Hardware Save Area
(HSA) at power-on and can be modified dynamically. A device number looks like the
addresses we described for early S/360 machines except that it can contain three or four
hexadecimal digits.

2 The more recent mainframe machines can have more than 256 channels, but an additional setup is needed for
this. The channels are assigned in a way that only two hexadecimal digits are needed for CHPID addresses.
82 z/OS Basics

Figure 3-4 Recent system configuration

Many users still refer to these as “addresses” although the device numbers are arbitrary
numbers between x'0000' and x’FFFF’. The newest mainframes, at the time of writing,
have two layers of I/O address translations between the real I/O elements and the
operating system software. The second layer was added to make migration to newer
systems easier.

Modern control units, especially for disks, often have multiple channel (or switch)
connections and multiple connections to their devices. They can handle multiple data
transfers at the same time on the multiple channels. Each device will have a unit control
block (UCB) in each z/OS image.

I/O Processing

Other
systems

01 02 ... 40 41 42 A0 A1

Control
Unit

ESCON
Director
(switch)

FICON
switch

Control
Unit

C0
Control

Unit

C1
Control

Unit

01
Control

Unit

02

E - ESC ON channel
F - FICON channel
O - OSA-Express channel

CEC box

Partition 1 Partition 2

LAN

O E E E E F F

Channels
(CHPIDs or PCHIDs)

Control unit addresses
(CUA)

00 11
00 11Unit addresses (UA)

01

00 11 00 11
 Chapter 3. Hardware systems and LPARs 83

Figure 3-5 Device addressing

3.3.2 System control and partitioning
There are many ways to illustrate a mainframe’s internal structure, depending on what we
wish to emphasize. Figure 3-6 on page 85, while highly conceptual, shows several of the
functions of the internal system controls on current mainframes. The internal controllers
are microprocessors but use a much simpler organization and instruction set than zSeries
processors. They are usually known as controllers to avoid confusion with zSeries
processors.

HSA

LPAR B
Central Storage

LPAR A
Central Storage

UCB
2001

UCB
2000

UCB
183F

6830
6831

6832
6833

FF00

FF01

FF02

FF03 C40

683F

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

200A

200B

200C

200D

200E

200F

External device label
Four hex digits in range 0000-FFFF
Assigned by the system programmer
Used in JCL, commands and messages

 IEE302I 200A ONLINE

V 200B,ONLINE

V 200A,ONLINE

84 z/OS Basics

Figure 3-6 System control and partitioning

Among the system control functions is the capability to partition the system into several
logical partitions (LPARs). An LPAR is a subset of the processor hardware that is
defined to support an operating system. An LPAR contains resources (processors,
memory, and input/output devices) and operates as an independent system. Multiple
logical partitions can exist within a mainframe hardware system.

For many years there was a limit of 15 LPARs in a mainframe; more recent machines
have a limit of 30 (and potentially more). Practical limitations of memory size, I/O
availability, and available processing power usually limit the number of LPARs to less
than these maximums.

System administrators assign portions of memory to each LPAR; memory cannot be
shared among LPARs. The administrators can assign processors (noted as CPs in
Figure 3-6) to specific LPARs or they can allow the system controllers to dispatch any or
all the processors to all the LPARs using an internal load-balancing algorithm. Channels

Note: The hardware and firmware that provides partitioning is known as PR/SM™
(Processor Resource/System Manager). It is the PR/SM functions that are used to
create and run LPARs. This difference between PR/SM (a built-in facility) and LPARs
(the result of using PR/SM) is often ignored and the term LPAR is used collectively
for the facility and its results.

CP CP CP CP

System Control

LPAR1 LPAR2 LPAR3

System Control

CHPID

CHPID

CHPID CHPID CHPID

CHPID CHPID

HMC SE

Specialized microprocessors for
internal control functions

PC ThinkPads

Located in operator area Located inside CEC but
can be used by operators

Memory

Processors

Channels
 Chapter 3. Hardware systems and LPARs 85

(CHPIDs) can be assigned to specific LPARs or can be shared by multiple LPARs,
depending on the nature of the devices on each channel.

A system with a single processor (CP processor) can have multiple LPARs. PR/SM has
an internal dispatcher that can allocate a portion of the processor to each LPAR, much as
an operating system dispatcher allocates a portion of its processor time to each process,
thread, or task.

Partitioning control specifications are partly contained in the IOCDS and are partly
contained in a system profile. The IOCDS and profile both reside in the Support Element
(SE) which is simply a ThinkPad (IBM laptop) inside the system. The SE can be
connected to one or more Hardware Management Consoles (HMCs), which are desktop
personal computers. An HMC is more convenient to use than an SE and can control
several different mainframes.

Working from an HMC (or from an SE, in unusual circumstances), an operator prepares a
mainframe for use by selecting and loading a profile and an IOCDS. These create LPARs
and configure the channels with device numbers, LPAR assignments, multiple path
information, and so forth. This is known as a Power-on Reset (POR). By loading a
different profile and IOCDS, the operator can completely change the number and nature
of LPARs and the appearance of the I/O configuration. However, doing this is usually
disruptive to any running operating systems and applications and is therefore seldom
done without advance planning.

3.3.3 Characteristics of LPARs
LPARs are, in practice, equivalent to separate mainframes. Each LPAR runs its own
operating system. This can be any mainframe operating system; there is no need to run
z/OS, for example, in each LPAR. The installation planners may elect to share I/O
devices across several LPARs, but this is a local decision.

The system administrator can assign one or more system processors for the exclusive use
of an LPAR. Alternately, the administrator can allow all processors to be used on some or
all LPARs. Here, the system control functions (often known as microcode or firmware)
provide a dispatcher to share the processors among the selected LPARs. The
administrator can specify a maximum number of concurrent processors executing in each
LPAR. The administrator can also provide weightings for different LPARs; for example,
specifying that LPAR1 should receive twice as much processor time as LPAR2.

The operating system in each LPAR is IPLed separately, has its own copy3 of its
operating system, has its own operator console (if needed), and so forth. If the system in
one LPAR crashes, there is no effect on the other LPARs.

3 Most, but not all, of the z/OS system libraries can be shared.
86 z/OS Basics

In Figure 3-6 on page 85, for example, we might have a production z/OS in LPAR1, a test
version of z/OS in LPAR2, and Linux for S/390 in LPAR3. If our total system has 8 GB
of memory, we might have assigned 4 GB to LPAR1, 1 GB to LPAR2, 1 GB to LPAR3,
and have kept 2 GB in reserve for some reason. The operating system consoles for the
two z/OS LPARs might be in completely different locations.4

For most practical purposes there is no difference between, for example, three separate
mainframes running z/OS (and sharing most of their I/O configuration) and three LPARs
on the same mainframe doing the same thing. With minor exceptions z/OS, the operators,
and applications cannot detect the difference.

The minor differences include the ability of z/OS (if permitted when the LPARs were
defined) to obtain performance and utilization information across the complete
mainframe system and to dynamically shift resources (processors and channels) among
LPARs to improve performance.

3.3.4 Consolidation of mainframes
There are fewer mainframes in use today than there were 15 or 20 years ago. In some
cases, all the applications were moved to other types of systems. However, in most cases
the reduced number is due to consolidation. That is, several smaller mainframes have
been replaced with a smaller number of larger systems.

There is a compelling reason for consolidation. Mainframe software (from many
vendors) can be expensive and typically costs more than the mainframe hardware. It is
usually less expensive (and sometimes much less expensive) to replace multiple software
licenses (for smaller machines) with one or two licenses (for larger machines). Software
license costs are often linked to the power of the system but the pricing curves favor a
small number of large machines.

Software license costs for mainframes have become a dominant factor in the growth and
direction of the mainframe industry. There are several nonlinear factors that make
software pricing very difficult. We must remember that mainframe software is not a mass
market situation like PC software. The growth of mainframe processing power in recent
years has been nonlinear.

The relative power needed to run a traditional mainframe application (a batch job written
in COBOL, for example) does not have a linear relation to the power needed for a new
application (with a GUI interface, written in C and Java). The consolidation effect has
produced very powerful mainframes. These might need 1% of their power to run an
application, but the application vendor often sets a price based on the total power of the
machine.

4 Linux does not have an operator console in the sense of the z/OS consoles.
 Chapter 3. Hardware systems and LPARs 87

This results in the odd situation where customers want the latest mainframe (to obtain
new functions or to reduce maintenance costs associated with older machines) but they
want the slowest mainframe that will run their applications (to reduce software costs
based on total system processor power).

3.4 Processing units
Figure 3-1 on page 78 lists several different types of processors in a system. These are all
z/Architecture processors that can be used for slightly different purposes.5 Several of
these purposes are related to software cost control, while others are more fundamental.

All these start as equivalent processor units6 (PUs) or engines. A PU is a processor that
has not been characterized for use. Each of the processors begins as a PU and is
characterized by IBM during installation or at a later time. The potential
characterizations are:

� Central Processor (CP)

This is a processor available to normal operating system and application software.

� System Assistance Processor (SAP)

Every modern mainframe has at least one SAP; larger systems may have several. The
SAPs execute internal code7 to provide the I/O subsystem. An SAP, for example,
translates device numbers and real addresses of CHPIDs, control unit addresses, and
device numbers. It manages multiple paths to control units and performs error
recovery for temporary errors. Operating systems and applications cannot detect
SAPs, and SAPs do not use any “normal” memory.

� Integrated Facility for Linux (IFL)

This is a normal processor with one or two instructions disabled that are used only by
z/OS. Linux does not use these instructions and can be executed by an IFL. Linux can
be executed by a CP as well. The difference is that an IFL is not counted when
specifying the model number8 of the system. This can make a substantial difference
in software costs.

� zAAP

This is a processor with a number of functions disabled (interrupt handling, some
instructions) such that no full operating system can be executed on the processor.
However, z/OS can detect the presence of zAAP processors and will use them to

5 Do not confuse these with the controller microprocessors. The processors discussed in this section are full,
standard mainframe processors.
6 This discussion applies to the current zSeries machines at the time of writing. Earlier systems had fewer
processor characterizations, and even earlier systems did not use these techniques.
7 IBM refers to this as Licensed Internal Code (LIC). It is often known as microcode (which is not technically
correct) or as firmware. It is definitely not user code.
8 Some systems do not have different models; in this case a capacity model number is used.
88 z/OS Basics

execute Java code (and possibly other similar code in the future). The same Java code
can be executed on a standard CP. Again, zAAP engines are not counted when
specifying the model number of the system. Like IFLs, they exist only to control
software costs.

� Integrated Coupling Facility (ICF)

These processors run only Licensed Internal Code. They are not visible to normal
operating systems or applications. A Coupling Facility is, in effect, a large memory
scratch pad used by multiple systems to coordinate work. ICFs must be assigned to
LPARs that then become coupling facilities. These topics are discussed in more detail
in Chapter 4, “Parallel Sysplex and continuous availability” on page 103.

� Spare

An uncharacterized PU functions as a “spare.” If the system controllers detect a
failing CP or SAP, it can be replaced with a spare PU. In most cases this can be done
without any system interruption, even for the application running on the failing
processor.

� Various forms of Capacity on Demand and similar arrangements exist whereby a
customer can enable additional CPs at certain times (for unexpected peak loads, for
example).

In addition to these characterizations of processors, some mainframes have models or
versions that are configured to operate slower than the potential speed of their CPs. This
is widely known as kneecapping, although IBM prefers the term capacity setting, or
something similar. It is done by using microcode to insert null cycles into the processor
instruction stream. The purpose, again, is to control software costs by having the
minimum mainframe model or version that meets the application requirements. IFLs,
SAPs, zAAPs, and ICFs always function at the full speed of the processor since these
processors “do not count” in software pricing calculations.9

3.5 Multiprocessors
All the earlier discussions and examples assume that more than one processor (CP) is
present in a system (and perhaps in an LPAR). It is possible to purchase a current
mainframe with a single processor (CP), but this is not a typical system.10 The term
multiprocessor means several processors (CP processors) and implies that several
processors are used by a copy of z/OS.

All operating systems today, from PCs to mainframes, can work in a multiprocessor
environment. However, the degree of integration of the multiple processors varies
9 This is true for IBM software but may not be true for all software vendors.
10 All current IBM mainframes also require at least one SAP, so the minimum system has two processors: one
CP and one SAP. However, the use of “processor” in the text usually means a CP processor usable for
applications. Whenever discussing a processor other than a CP, we always make this clear.
 Chapter 3. Hardware systems and LPARs 89

considerably. For example, pending interrupts in a system (or in an LPAR) can be
accepted by any processor in the system (or working in the LPAR). Any processor can
initiate and manage I/O operations to any channel or device available to the system or
LPAR. Channels, I/O devices, interrupts, and memory are owned by the system (or by the
LPAR) and not by any specific processor.

This multiprocessor integration appears simple on the surface, but its implementation is
complex. It is also important for maximum performance; the ability of any processor to
accept any interrupt sent to the system (or to the LPAR) is especially important.

Each processor in a system (or in an LPAR) has a small private area of memory (8 KB
starting at real address 0 and always mapped to virtual address 0) that is unique to that
processor. This is the Prefix Storage Area (PSA) and is used for interrupt handling and
for error handling. A processor can access another processor’s PSA through special
programming, although this is normally done only for error recovery purposes. A
processor can interrupt other processors by using a special instruction (SIGP, for Signal
Processor). Again, this is typically used only for error recovery.

3.6 Disk devices
IBM 3390 disk drives are commonly used on current mainframes. Conceptually, this is a
simple arrangement, as shown in Figure 3-7.

Figure 3-7 Initial IBM 3390 disk implementation

The associated control unit (3990) typically has four channels connected to one or more
processors (probably with a switch), and the 3390 unit typically has eight or more disk
drives. Each disk drive has the characteristics explained earlier. This illustration shows
3990 and 3390 units, and it also represents the concept or architecture of current devices.

The current equivalent device is an IBM 2105 Enterprise Storage Server®, simplistically
illustrated in Figure 3-8.

IBM 3390 Disk Unit

IBM 3990
Control Unit

channels
90 z/OS Basics

Figure 3-8 Current 3390 implementation

The 2105 unit is a very sophisticated device. It emulates a large number of control units
and 3390 disk drives. It contains up to 11 TB of disk space, has up to 32 channel
interfaces, 16 GB cache, and 284 MB of non-volatile memory (used for write queueing).
The Host Adapters appear as control unit interfaces and can connect up to 32 channels
(ESCON or FICON).

The physical disk drives are commodity SCSI-type units (although a serial interface,
known as SSA, is used to provide faster and redundant access to the disks). A number of
internal arrangements are possible, but the most common involves many RAID 5 arrays
with hot spares. Practically everything in the unit has a spare or fallback unit. The
internal processing (to emulate 3990 control units and 3390 disks) is provided by four
high-end RISC processors in two processor complexes; each complex can operate the
total system. Internal batteries preserve transient data during short power failures. A
separate console is used to configure and manage the unit.

The 2105 offers many functions not available in real 3390 units, including FlashCopy®,
Extended Remote Copy, Concurrent Copy, Parallel Access Volumes, Multiple
Allegiance, a huge cache, and so forth.

A simple 3390 disk drive (with control unit) has different technology from the 2105 just
described. However, the basic architectural appearance to software is the same. This
allows applications and system software written for 3390 disk drives to use the newer
technology with no revisions.11

Common Interconnect (across clusters)

HA HA HA HA HA HA HA HA HA HA HA HA HA HA HA HA

 Cluster Processor Complex

 cache NVS

DA DA DA DA

 Cluster Processor Complex

 cache NVS

DA DA DA DA

RAID array

RAID array

Device Adapters

Host Adapters (2 channel interfaces per adapter)
 Chapter 3. Hardware systems and LPARs 91

There have been several stages of new technology implementing 3390 disk drives; the
2105 is the most recent of these. The process of implementing an architectural standard
(in this case the 3390 disk drive and associated control unit) with newer and different
technology while maintaining software compatibility is characteristic of mainframe
development. As has been mentioned several times, maintaining application
compatibility over long periods of technology change is an important characteristic of
mainframes.

3.7 Clustering
Clustering has been done on mainframes since the early S/360 days, although the term
cluster is seldom used there. A clustering technique can be as simple as a shared DASD
configuration where manual control or planning is needed to prevent unwanted data
overlap.

Additional clustering techniques have been added over the years. In the following
paragraphs we discuss three levels of clustering: Basic Shared DASD, CTC rings, and
Parallel Sysplex. Most z/OS installations today use one or more of these levels; a single
z/OS installation is relatively rare.

In this discussion we use the term “image.” A z/OS system (with one or more processors)
is a z/OS image. A z/OS image might exist on a S/390 or zSeries server (with LPARs), or
it might exist in an LPAR, or it might run under z/VM (a hypervisor operating system). A
system with six LPARs—each a separate z/OS system—has six z/OS images. We use the
term image to indicate that we do not care where (basic system, LPAR, z/VM) a z/OS
system is running.

3.7.1 Basic shared DASD
A basic shared DASD environment is illustrated in Figure 3-9. The figure shows z/OS
images, but these could be any earlier version of the operating system. This could be two
LPARs in the same system or two separate systems; there is absolutely no difference in
the concept or operation.

11 Some software enhancements are needed to use some of the new functions, but these are compatible
extensions at the operating system level and do not affect application programs.
92 z/OS Basics

Figure 3-9 Basic shared DASD

The capabilities of a basic shared DASD system are limited. The operating systems
automatically issue RESERVE and RELEASE commands to a DASD before updating
the volume table of contents (VTOC) or catalog. (The VTOC and catalog are structures
that contain metadata for the DASD, indicating where various data sets reside.) The
RESERVE command limits access to the entire DASD to the system issuing the
command, and this lasts until a RELEASE command is issued. These commands work
well for limited periods (such as updating metadata). Applications can also issue
RESERVE/RELEASE commands to protect their data sets for the duration of the
application. This is not automatically done in this environment and is seldom done in
practice because it would lock out other systems’ access to the DASD for too long.

A basic shared DASD system is typically used where the Operations staff controls which
jobs go to which system and ensures that there is no conflict such as both systems trying
to update the same data at the same time. Despite this limitation, a basic shared DASD
environment is very useful for testing, recovery, and careful load balancing.

Other types of devices or control units can be attached to both systems. For example, a
tape control unit, with multiple tape drives, can be attached to both systems. In this
configuration the operators can then allocate individual tape drives to the systems as
needed.

zSeries (or LPAR)

z/OS
channels

zSeries (or LPAR)

z/OS
channels

control unit control unit

Real system would
have many more
control units and
devices
 Chapter 3. Hardware systems and LPARs 93

3.7.2 CTC rings
Figure 3-10 shows the next level of clustering. This has the same shared DASD as
discussed previously, but also has two channel-to-channel (CTC) connections between
the systems. This is known as a CTC ring. (The ring aspect is more obvious when more
than two systems are involved.)

Figure 3-10 Basic sysplex

z/OS can use the CTC ring to pass control information among all systems in the ring. The
information that can be passed this way includes:

� Usage and locking information for data sets on disks. This allows the system to
automatically prevent unwanted duplicate access to data sets. This locking is based
on JCL specifications provided for jobs sent to the system.

� Job queue information such that all the systems in the ring can accept jobs from a
single input queue. Likewise, all systems can send printed output to a single output
queue.

� Security controls that allow uniform security decisions across all systems.
� Disk metadata controls so that RESERVE and RELEASE disk commands are not

necessary.

To a large extent, batch jobs and interactive users can run on any system in this
configuration because all disk data sets can be accessed from any z/OS image. Jobs (and
interactive users) can be assigned to whichever system is most lightly loaded at the time.

zSeries (or LPAR)

z/OS
channels

zSeries (or LPAR)

z/OS
channels

Control unit Control unit

Can have more systems
 in the CTC "ring"

CTC

CTC
94 z/OS Basics

When the CTC configurations were first used, the basic control information shared was
locking information. The z/OS component doing this is called global resource
serialization function; this configuration is called a GRS ring. The primary limitation of a
GRS ring is the latency involved in sending messages around the ring.

A different CTC configuration was used before the ring technique was developed. This
required two CTC connections from every system to every other system in the
configuration. When more than two or three systems were involved, this became
complex and required a considerable number of channels.

The earlier CTC configurations (every-system-to-every-system or a ring configuration)
were later developed into a basic sysplex configuration. This includes control data sets on
the shared DASD. These are used for consistent operational specifications for all systems
and to retain information over system restarts.

Configurations with shared DASD, CTC connections, and shared job queues are known
as loosely coupled systems. (Multiprocessors, where several processors are used by the
operating system, are sometimes contrasted as tightly coupled systems but this
terminology is seldom used. These are also known as Symmetrical MultiProcessors
(SMPs); the SMP terminology is common with RISC systems, but is not normally used
for mainframes.)

3.7.3 Parallel sysplex
The most recent cluster configuration is a Parallel Sysplex. This involves one or more
Coupling Facilities (CFs). A Coupling Facility is a mainframe processor, with memory
and special channels, and a built-in operating system. It has no I/O devices, other than the
special channels, and the operating system is very small.12

A CF functions largely as a fast scratch pad. It is used for three purposes:

� Locking information that is shared among all attached systems
� Cache information (such as for a data base) that is shared among all attached systems
� Data list information that are shared among all attached systems

The information in the CF resides in memory and a CF typically has a large memory. A
CF can be a separate system or an LPAR can be used as a CF. Figure 3-11 illustrates a
small Parallel Sysplex with two z/OS images. Again, this whole configuration could be
in three LPARs of a single system, in three separate systems, or in a mixed combination.

12 The CF operating system is nothing like z/OS and has no direct user interfaces.
 Chapter 3. Hardware systems and LPARs 95

Figure 3-11 Parallel Sysplex

In many ways a Parallel Sysplex system appears as a single large system. It has a single
operator interface (which controls all systems). With proper planning and operation
(neither of which is trivial), complex workloads can be shared by any or all systems in
the Parallel Sysplex, and recovery (by another system in the Parallel Sysplex) can be
automatic for many workloads.

Parallel Sysplex systems are described in more detail in Chapter 4, “Parallel Sysplex and
continuous availability” on page 103. The purpose of this brief introduction is to
introduce additional terminology.

zSeries (or LPAR)

z/OS
channels

zSeries (or LPAR)

z/OS
channels

control unit control unit

system or LPAR

Coupling
Facility

CF channels
96 z/OS Basics

3.8 Typical mainframe systems
We outline the general configurations of three different levels of configuration in this
section. These are not intended to be detailed descriptions, but are simply overviews.

3.8.1 Very small systems
The first two examples, in Figure 3-12 on page 97, show that mainframe refers more to a
style of computing rather than to unique hardware. Two different systems are illustrated
and neither uses mainframe hardware in the generally accepted sense of the term.

Figure 3-12 Very small mainframe configurations

The first system illustrated is an IBM Multiprise® 3000 system (MP3000). which IBM
withdrew from marketing as this book was written. It was the smallest S/390 system
produced in recent years. The MP3000 has one or two S/390 processors plus a SAP
processor. It also has internal disk drives that can be configured to operate as normal IBM
3390 disk drives. A minimal internal tape drive is normally used for software installation.
The MP3000 can have a substantial number of ESCON or parallel channels for
connection to traditional external I/O devices.

Printer

MP3000
system

SUPPORT
element

Standard mainframe control units and devices

ESCON channels

LAN
adapter(s)

tn3270 terminals

Printer

tn3270 terminals

LAN
adapter(s)

Emulated
system

Parallel channels

Selected mainframe control units and devices
 Chapter 3. Hardware systems and LPARs 97

The MP3000 is completely compatible with S/390 mainframes, but lacks later zSeries
features. It can run early versions of z/OS and all prior versions of the operating system.
It is typically used with z/VM or z/VSE operating systems.

The second system shown, the emulated zSeries system, has no mainframe hardware. It
is based on a personal computer (running Linux or UNIX) and uses software to emulate
z/OS13. Special PCI channel adapters can be used to connect to selected mainframe I/O
devices. The personal computer running the emulated z/OS can have substantial internal
disks (typically in a RAID array) for emulating IBM 3390 disk drives.

Both of these systems lack some features found in “real” mainframes. Nevertheless, both
are capable of doing quality work. Typical application software cannot distinguish these
systems from real mainframes. In fact, these are considered mainframes because their
operating systems, their middleware, their applications, and their style of usage are the
same as for larger mainframes. The MP3000 can be configured with LPARs and might
run both test and production systems. The emulated system does not provide LPARs, but
can accomplish much the same thing by running multiple copies of the emulator
software.

A key attraction of these systems is that they can be a “mainframe in a box.” In many
cases no external traditional I/O devices are needed. This greatly reduces the entry-level
price for a mainframe system.

3.8.2 Medium single systems
Figure 3-13 on page 99 shows a modest mainframe system and shows the typical external
elements needed. The particular system shown is an IBM z890 system with two recent
external disk controllers, a number of tape drives, printers, LAN attachments, and
consoles.

This is a somewhat idealized configuration in that no older devices are involved. The
systems outlined here might have a number of LPARs active, for example:

� A production z/OS system running interactive applications.
� A second production z/OS devoted to major batch applications. (These could also be

run in the first LPAR, but some installations prefer a separate LPAR for management
purposes.)

� A test z/OS version for testing new software releases, new applications, and so forth.
� One or several Linux partitions, perhaps running Web-related applications.

13
98 z/OS Basics

Figure 3-13 Medium mainframe configuration

The disk controllers in Figure 3-13 contain a large number of commodity drives running
in multiple RAID configurations. The control unit transforms their interfaces to appear as
standard IBM 3390 disk drives, which is the most common disk appearance for
mainframes. These disk control units have multiple channel interfaces and can all operate
in parallel.

3.8.3 Larger systems
Figure 3-14 shows a larger mainframe, although this is still a modest configuration when
compared to a large mainframe installation. This example is typical in that both older and
newer mainframes are present, along with channel switches allowing all systems to
access most I/O devices. Likewise, new and older disk controllers (and devices) and tape
controllers (and devices) are present. The total system is in a modest Parallel Sysplex
configuration.

Printer

RouterTape
drives

LAN

Consoles

OSA-Express
z890

Printer

Enterprise
Storage Server1

Enterprise
Storage Server1
 Chapter 3. Hardware systems and LPARs 99

Figure 3-14 Moderately large mainframe configuration

Briefly, the devices in Figure 3-14 include:

� An IBM 3745, which is a communications controller optimized for connection to
remote terminals and controllers, and LANs. A 3745 appears as a control unit to the
mainframe.

� IBM 3490E tape drives, which, though somewhat outdated, handle the most widely
used mainframe-compatible tape cartridges.

� A sixth-generation mainframe design (G6).
� A newer z990 mainframe.
� An Enterprise Storage Server (ESS).
� ESCON directors.

OSA Express

LAN

LAN

Older DASD
device 3390

3490E

OSA Express

Consoles

CFCF

Escon
Director

Escon
Director

LAN
OSA Express

LAN
OSA Express

z990 9672
R96

Enterprise
Storage Server1

Enterprise
Storage Server1
100 z/OS Basics

� OSA Express connections to several LANs.
� CF (shown as a separate box, but it might be an LPAR in the mainframe).

3.9 Summary
Being aware of various meanings of the terms systems, processors, CPs, and so forth is
important for your understanding of mainframe computers. The original S/360
architecture, based on CPUs, memory, channels, control units, and devices, and the way
these are addressed, is fundamental to understanding mainframe hardware—even though
almost every detail of the original design has been changed in various ways. The
concepts and terminology of the original design still permeate mainframe descriptions
and designs.

The ability to partition a large system into multiple smaller systems (LPARs) is now a
core requirement in practically all mainframe installations. The flexibility of the
hardware design, allowing any processor (CP) to access and accept interrupts for any
channel, control unit, and device connected to a given LPAR, contributes to the
flexibility, reliability, and performance of the complete system. The availability of a pool
of processors (PUs) that can be configured (by IBM) as customer processors (CPs), I/O
processors (SAPs), dedicated Linux processors (IFLs), dedicated Java-type processors
(zAAPs), and spare processors is unique to mainframes and, again, provides great
flexibility in meeting customer requirements. Some of these requirements are based on
the cost structures of some mainframe software.

In addition to the primary processors just mentioned (the PUs, and all their
characterizations), mainframes have a network of controllers (special microprocessors)
that control the system as a whole. These controllers are not visible to the operating
system or application programs.

Since the early 1970s mainframes have been designed as multiprocessor systems, even
when only a single processor is installed. All operating system software is designed for
multiple processors; a system with a single processor is considered a special case of a
general multiprocessor design.

All but the smallest mainframe installations typically use clustering techniques, although
they do not normally use the terms cluster or clustering. As stated previously, a clustering
technique can be as simple as a shared DASD configuration where manual control or
planning is needed to prevent unwanted data overlap.

More common today are configurations that allow sharing of locking and enqueueing
controls among all systems. Among other benefits, this automatically manages access to
data sets so that unwanted concurrent usage does not occur.
 Chapter 3. Hardware systems and LPARs 101

The most sophisticated of the clustering techniques is a Parallel Sysplex, which is
discussed in Chapter 4, “Parallel Sysplex and continuous availability” on page 103.

Key terms in this topic

central electronic complex
(CEC)

central processing unit
(CPU)

Channel Path Identifier
(CHPID)

channel-to-channel (CTC) ESCON channel FICON channel

hardware management
console (HMC)

I/O connectivity Integrated Facility for Linux
(IFL)

logical partition (LPAR) multiprocessor power-on reset (POR)

Support Element (SE) unicode zAAP processor
102 z/OS Basics

Chapter 4. Parallel Sysplex and
continuous availability

4

Objective: In working with the z/OS operating system, you need to understand how
it achieves near-continuous availability through technologies such as “no single points
of failure.”

After completing this topic, you will be able to:
� Discuss Parallel Sysplex.
� Explain how Parallel Sysplex can achieve continuous availability.
� Explain dynamic workload balancing.
� Explain the single system image.
© Copyright IBM Corp. 2005, 2006. All rights reserved. 103

4.1 Future of the new mainframe
This course concludes with a discussion of Parallel Sysplex and some examples of how
this powerful technology is used to ensure continuous availability in today’s large
systems environments.

Parallel Sysplex technology allows the linking up to 32 servers with near linear
scalability to create a powerful commercial processing clustered system. Every server in
a Parallel Sysplex cluster can be configured to share access to data resources, and a
“cloned” instance of an application might run on every server.

Parallel Sysplex design characteristics help businesses to run continuously, even during
periods of dramatic change. Sysplex sites can dynamically add and change systems in a
sysplex, and configure the systems for no single points of failure.

Through this state-of-the-art cluster technology, multiple z/OS systems can be made to
work in concert to more efficiently process the largest commercial workloads.

4.2 What a Parallel Sysplex is
A sysplex is a collection of z/OS systems that cooperate, using certain hardware and
software products, to process work. It is a clustering technology that can provide
near-continuous availability.

A conventional large computer system also uses hardware and software products that
cooperate to process work. A major difference between a sysplex and a conventional
large computer system is the improved growth potential and level of availability in a
sysplex. The sysplex increases the number of processing units and z/OS operating
systems that can cooperate, which in turn increases the amount of work that can be
processed. To facilitate this cooperation, new products were developed and old products
were enhanced.

A Parallel Sysplex is a sysplex that uses multisystem data-sharing technology. It allows
direct, concurrent read/write access to shared data from all processing nodes (or servers)
in the configuration without impacting performance or data integrity. Each node can
concurrently cache shared data in local processor memory through hardware-assisted
cluster-wide serialization and coherency controls.

As a result, work requests that are associated with a single workload, such as business
transactions or database queries, can be dynamically distributed for parallel execution on
nodes in the sysplex cluster based on available processor capacity.

Figure 4-1 shows the visible parts of a Parallel Sysplex, namely the hardware. These are
the key components of Parallel Sysplex as implemented in the hardware architecture.
104 z/OS Basics

Figure 4-1 Sysplex hardware overview

4.2.1 Shared data clustering
Parallel Sysplex technology extends the strengths of IBM mainframe computers by
linking up to 32 servers with near linear scalability to create a powerful commercial
processing clustered system. Every server in a Parallel Sysplex cluster has access to all
data resources, and every “cloned” application can run on every server. Using mainframe
Coupling Technology, Parallel Sysplex technology provides a “shared data” clustering
technique that permits multi-system data sharing with high performance read/write
integrity.

This “shared data” (as opposed to “shared nothing”) approach enables workloads to be
dynamically balanced across servers in the Parallel Sysplex cluster. It enables critical
business applications to take advantage of the aggregate capacity of multiple servers to
help ensure maximum system throughput and performance during peak processing
periods. In the event of a hardware or software outage, either planned or unplanned,
workloads can be dynamically redirected to available servers, thus providing
near-continuous application availability.

DASDDASDDASDDASDDASDDASD

ESCON / FICON

Sysplex Timer

IBM zSeries

CF02
CF

IBM zSeries

CF01
CF

z/OS

Sysplex
LPARs

IBM zSeries

z/OS

Sysplex
LPARs

1
2

3

4
567

8
9

10
11 12 1

2
3

4
567

8
9

10
11 12
 Chapter 4. Parallel Sysplex and continuous availability 105

4.2.2 Non-disruptive maintenance
Another unique advantage of using Parallel Sysplex technology is the ability to perform
hardware and software maintenance and installation in a non-disruptive manner.

Through data sharing and dynamic workload management, servers can be dynamically
removed from or added to the cluster, allowing installation and maintenance activities to
be performed while the remaining systems continue to process work. Furthermore, by
adhering to the IBM software and hardware coexistence policy, software and/or hardware
upgrades can be introduced one system at a time. This capability allows customers to roll
changes through systems at a pace that makes sense for their business.

The ability to perform rolling hardware and software maintenance in a non-disruptive
manner allows business to implement critical business function and react to rapid growth
without affecting customer availability.

4.3 Continuous availability of mainframes
Parallel Sysplex technology is an enabling technology, allowing highly reliable,
redundant, and robust mainframe technologies to achieve near-continuous availability. A
properly configured Parallel Sysplex cluster is designed to remain available to its users
and applications with minimal downtime, for example:
� Hardware and software components provide for concurrency to facilitate

non-disruptive maintenance, like Capacity Upgrade on Demand, which allows
processing or coupling capacity to be added one engine at a time without disruption to
running workloads.

� DASD subsystems employ disk mirroring or RAID technologies to help protect
against data loss, and exploit technologies to enable point-in-time backup, without the
need to shut down applications.

� Networking technologies deliver functions such as VTAM Generic Resources,
Multi-Node Persistent Sessions, Virtual IP Addressing, and Sysplex Distributor to
provide fault-tolerant network connections.

� I/O subsystems support multiple I/O paths and dynamic switching to prevent loss of
data access and improved throughput.

� z/OS software components allow new software releases to coexist with lower levels
of those software components to facilitate rolling maintenance.

� Business applications are “data sharing-enabled” and cloned across servers to allow
workload balancing to prevent loss of application availability in the event of an
outage.

� Operational and recovery processes are fully automated and transparent to users, and
reduce or eliminate the need for human intervention.
106 z/OS Basics

Parallel Sysplex is a way of managing this multi-system environment, providing such
benefits as:
� “No single points of failure” on page 107
� “Capacity and scaling” on page 108
� “Dynamic workload balancing” on page 108
� “Ease of use” on page 109
� “Single system image” on page 111
� “Compatible change and non-disruptive growth” on page 112
� “Application compatibility” on page 112
� “Disaster recovery” on page 113

These benefits are described in the remaining sections of this topic.

4.3.1 No single points of failure
In a Parallel Sysplex cluster, it is possible to construct a parallel processing environment
with no single points of failure. Because all of the systems in the Parallel Sysplex can
have concurrent access to all critical applications and data, the loss of a system due to
either hardware or software failure does not necessitate loss of application availability.

Peer instances of a failing subsystem executing on remaining healthy system nodes can
take over recovery responsibility for resources held by the failing instance. Alternatively,
the failing subsystem can be automatically restarted on still-healthy systems using
automatic restart capabilities to perform recovery for work in progress at the time of the
failure. While the failing subsystem instance is unavailable, new work requests can be
redirected to other data-sharing instances of the subsystem on other cluster nodes to
provide continuous application availability across the failure and subsequent recovery.
This provides the ability to mask planned as well as unplanned outages to the end user.

Because of the redundancy in the configuration, there is a significant reduction in the
number of single points of failure. Without a Parallel Sysplex, the loss of a server could
severely impact the performance of an application, as well as introduce system
management difficulties in redistributing the workload or reallocating resources until the
failure is repaired. In an Parallel Sysplex environment, it is possible that the loss of a
server may be transparent to the application, and the server workload can be redistributed
automatically within the Parallel Sysplex with little performance degradation. Therefore,
events that otherwise would seriously impact application availability, such as failures in
CEC hardware elements or critical operating system components, would, in a Parallel
Sysplex environment, have reduced impact.

Even though they work together and present a single image, the nodes in a Parallel
Sysplex cluster remain individual systems, making installation, operation, and
maintenance non-disruptive. The system programmer can introduce changes, such as
software upgrades, one system at a time, while the remaining systems continue to process
 Chapter 4. Parallel Sysplex and continuous availability 107

work. This allows the mainframe IT staff to roll changes through its systems on a
schedule that is convenient to the business.

4.3.2 Capacity and scaling
The Parallel Sysplex environment can scale nearly linearly from 2 to 32 systems. This
can be a mix of any servers that support the Parallel Sysplex environment. The aggregate
capacity of this configuration meets every processing requirement known today.

4.3.3 Dynamic workload balancing
The entire Parallel Sysplex cluster can be viewed as a single logical resource to end users
and business applications. Just as work can be dynamically distributed across the
individual processors within a single SMP server, so too can work be directed to any
node in a Parallel Sysplex cluster having available capacity. This avoids the need to
partition data or applications among individual nodes in the cluster or to replicate
databases across multiple servers.

Workload balancing also permits a business to run diverse applications across a Parallel
Sysplex cluster while maintaining the response levels critical to a business. The
mainframe IT director selects the service level agreements required for each workload,
and the workload management (WLM) component of z/OS, along with subsystems such
as CP/SM or IMS, automatically balances tasks across all the resources of the Parallel
Sysplex cluster to meet these business goals. The work can come from a variety of
sources, such as batch, SNA, TCP/IP, DRDA, or WebSphere MQ.

There are several aspects to consider for recovery. First, when a failure occurs, it is
important to bypass it by automatically redistributing the workload to utilize the
remaining available resources. Secondly, it is necessary to recover the elements of work
that were in progress at the time of the failure. Finally, when the failed element is
repaired, it should be brought back into the configuration as quickly and transparently as
possible to again start processing the workload. Parallel Sysplex technology enables all
this to happen.

Workload distribution
After the failing element has been isolated, it is necessary to non-disruptively redirect the
workload to the remaining available resources in the Parallel Sysplex. In the event of
failure in the Parallel Sysplex environment, the online transaction workload is
automatically redistributed without operator intervention.

Generic resource management
Generic resource management provides the ability to specify to VTAM a common
network interface. This can be used for CICS terminal owning regions (TORs), IMS
Transaction Manager, TSO, or DB2 DDF work. If one of the CICS TORs fails, for
108 z/OS Basics

example, only a subset of the network is affected. The affected terminals are able to
immediately log on again and continue processing after being connected to a different
TOR.

4.3.4 Ease of use
The Parallel Sysplex solution satisfies a major customer requirement for continuous
24-hour-a-day, 7-day-a-week availability, while providing techniques for achieving
simplified Systems Management consistent with this requirement. Some of the features
of the Parallel Sysplex solution that contribute to increased availability also help to
eliminate some Systems Management tasks. Examples include:
� “Workload management (WLM) component” on page 109
� “Sysplex Failure Manager (SFM)” on page 109
� “Automatic Restart Manager (ARM)” on page 110
� “Cloning and symbolics” on page 110
� “zSeries resource sharing” on page 110

Workload management (WLM) component
The workload management (WLM) component of z/OS provides sysplex-wide workload
management capabilities based on installation-specified performance goals and the
business importance of the workloads. WLM tries to attain the performance goals
through dynamic resource distribution. WLM provides the Parallel Sysplex cluster with
the intelligence to determine where work needs to be processed and in what priority. The
priority is based on the customer's business goals and is managed by sysplex technology.

Sysplex Failure Manager (SFM)
The Sysplex Failure Management policy allows the installation to specify failure
detection intervals and recovery actions to be initiated in the event of the failure of a
system in the sysplex.

Without SFM, when one of the systems in the Parallel Sysplex fails, the operator is
notified and prompted to take some recovery action. The operator may choose to
partition the non-responding system from the Parallel Sysplex, or to take some action to
try to recover the system. This period of operator intervention might tie up critical system
resources required by the remaining active systems. Sysplex Failure Manager allows the
installation to code a policy to define the recovery actions to be initiated when specific
types of problems are detected, such as fencing off the failed image that prevents access
to shared resources, logical partition deactivation, or central storage and expanded
storage acquisition, to be automatically initiated following detection of a Parallel Sysplex
failure.
 Chapter 4. Parallel Sysplex and continuous availability 109

Automatic Restart Manager (ARM)
Automatic restart manager enables fast recovery of subsystems that might hold critical
resources at the time of failure. If other instances of the subsystem in the Parallel Sysplex
need any of these critical resources, fast recovery will make these resources available
more quickly. Even though automation packages are used today to restart the subsystem
to resolve such deadlocks, ARM can be activated closer to the time of failure.

Automatic Restart Manager reduces operator intervention in the following areas:
� Detection of the failure of a critical job or started task
� Automatic restart after a started task or job failure

After an ABEND of a job or started task, the job or started task can be restarted with
specific conditions, such as overriding the original JCL or specifying job
dependencies, without relying on the operator.

� Automatic redistribution of work to an appropriate system following a system failure

This removes the time-consuming step of human evaluation of the most appropriate
target system for restarting work

Cloning and symbolics
Cloning refers to replicating the hardware and software configurations across the
different physical servers in the Parallel Sysplex. That is, an application that is going to
take advantage of parallel processing might have identical instances running on all
images in the Parallel Sysplex. The hardware and software supporting these applications
could also be configured identically on all systems in the Parallel Sysplex to reduce the
amount of work required to define and support the environment.

The concept of symmetry allows new systems to be introduced and enables automatic
workload distribution in the event of failure or when an individual system is scheduled
for maintenance. It also reduces the amount of work required by the system programmer
in setting up the environment. Note that symmetry does not preclude the need for systems
to have unique configuration requirements, such as the asymmetric attachment of printers
and communications controllers, or asymmetric workloads that do not lend themselves to
the parallel environment.

System symbolics are used to help manage cloning. z/OS provides support for the
substitution values in startup parameters, JCL, system commands, and started tasks.
These values can be used in parameter and procedure specifications to allow unique
substitution when dynamically forming a resource name.

zSeries resource sharing
A number of base z/OS components have discovered that IBM S/390 Coupling Facility
shared storage provides a medium for sharing component information for the purpose of
multi-system resource management. This exploitation, called IBM zSeries Resource
110 z/OS Basics

Sharing, enables sharing of physical resources such as files, tape drives, consoles, and
catalogs with improvements in cost, performance and simplified systems management.
This is not to be confused with Parallel Sysplex data sharing by the database subsystems.
zSeries Resource Sharing delivers immediate value even for customers who are not
leveraging data sharing, through native system exploitation delivered with the base z/OS
software stack.

One of the goals of the Parallel Sysplex solution is to provide simplified systems
management by reducing complexity in managing, operating, and servicing a Parallel
Sysplex, without requiring an increase in the number of support staff and without
reducing availability.

4.3.5 Single system image
Even though there could be multiple servers and z/OS images in the Parallel Sysplex and
a mix of different technologies, the collection of systems in the Parallel Sysplex should
appear as a single entity to the operator, the end user, the database administrator, and so
on. A single system image brings reduced complexity from both operational and
definition perspectives.

Regardless of the number of system images and the complexity of the underlying
hardware, the Parallel Sysplex solution provides for a single system image from several
perspectives:
� Data access, allowing dynamic workload balancing and improved availability
� Dynamic Transaction Routing, providing dynamic workload balancing and improved

availability
� End-user interface, allowing logon to a logical network entity
� Operational interfaces, allowing easier Systems Management

Single point of control
It is a requirement that the collection of systems in the Parallel Sysplex can be managed
from a logical single point of control. The term “single point of control” means the ability
to access whatever interfaces are required for the task in question, without reliance on a
physical piece of hardware. For example, in a Parallel Sysplex of many systems, it is
necessary to be able to direct commands or operations to any system in the Parallel
Sysplex, without the necessity for a console or control point to be physically attached to
every system in the Parallel Sysplex.

Persistent single system image across failures
Even though individual hardware elements or entire systems in the Parallel Sysplex fail,
a single system image must be maintained. This means that, as with the concept of single
point of control, the presentation of the single system image is not dependent on a
specific physical element in the configuration. From the end-user point of view, the
 Chapter 4. Parallel Sysplex and continuous availability 111

parallel nature of applications in the Parallel Sysplex environment must be transparent.
An application should be accessible regardless of which physical z/OS image supports it.

4.3.6 Compatible change and non-disruptive growth
A primary goal of Parallel Sysplex is continuous availability. Therefore, it is a
requirement that changes such as new applications, software, or hardware can be
introduced non-disruptively, and that they be able to coexist with current levels. In
support of compatible change, the hardware and software components of the Parallel
Sysplex solution will allow the coexistence of two levels, that is, level N and level N+1.
This means, for example, that no IBM software product will make a change that cannot
be tolerated by the previous release.

4.3.7 Application compatibility
A design goal of Parallel Sysplex clustering is that no application changes be required to
take advantage of the technology. For the most part, this has held true, although some
affinities need to be investigated to get the maximum advantage from the configuration.

From the application architects’ point of view, three major points might lead to the
decision to run an application in a Parallel Sysplex:
� Technology benefits

Scalability (even with non-disruptive upgrades), availability, and dynamic workload
management are tools that enable an architect to meet customer needs in cases where
the application plays a key role in the customer’s business process. With the
multisystem data sharing technology, all processing nodes in a Parallel Sysplex have
full concurrent read/write access to shared data without affecting integrity and
performance.

� Integration benefits

Since many applications are historically S/390- and z/OS-based, new applications on
z/OS get performance and maintenance benefits, especially if they are connected to
existing applications.

� Infrastructure benefits

If there is already an existing Parallel Sysplex, it needs very little infrastructure work
to integrate a new application. In many cases the installation does not need to
integrate new servers. Instead it can leverage the existing infrastructure and make use
of the strengths of the existing sysplex. With Geographically Dispersed Parallel
Sysplex™ (GDPS®)—connecting multiple sysplexes in different locations—the
mainframe IT staff can create a configuration that is enabled for disaster recovery.
112 z/OS Basics

4.3.8 Disaster recovery
Geographically Dispersed Parallel Sysplex (GDPS) is the primary disaster recovery and
continuous availability solution for a mainframe-based multi-site enterprise. GDPS
automatically mirrors critical data and efficiently balances workload between the sites.

GDPS also uses automation and Parallel Sysplex technology to help manage multi-site
databases, processors, network resources and storage subsystem mirroring. This
technology offers continuous availability, efficient workload management, resource
management and prompt data recovery for business-critical mainframe applications and
data. With GDPS, the current maximum distance between the two sites is 100km (about
62 miles) of fiber, although there are some other restrictions. This provides a
synchronous solution that helps to ensure no loss of data.

There is also GDPS/XRC, which can be used over extended distances and should provide
a recovery point objective of less than two minutes (that is, a maximum of two minutes of
data would need to be recovered or is lost).

4.4 Summary
Parallel Sysplex technology allows the linking up to 32 servers with near linear
scalability to create a powerful commercial processing clustered system. Every server in
a Parallel Sysplex cluster has access to all data resources, and every “cloned” application
can run on every server. When used with coupling technology, Parallel Sysplex provides
a “shared data” clustering technique that permits multi-system data sharing with high
performance read/write integrity.

Sysplex design characteristics help businesses to run continuously, even during periods
of dramatic change. Sysplex sites can dynamically add and change systems in a sysplex,
and configure the systems for no single points of failure.

Through this state-of-the-art cluster technology, multiple z/OS systems can be made to
work in concert to more efficiently process the largest commercial workloads.

Key terms in this topic

Automatic Restart
Manager (ARM)

cloning continuous availability

coupling technology dynamic workload
management

Geographically Dispersed
Parallel Sysplex (GDPS)

Parallel Sysplex shared data clustering single point of control

symbolics sysplex zSeries resource sharing
 Chapter 4. Parallel Sysplex and continuous availability 113

114 z/OS Basics

	Contents
	Preface
	How this course is organized
	How each topic is organized

	Part 1 System programming on z/OS
	Chapter 1. Overview of system programming
	1.1 The role of the system programmer
	1.2 What is meant by separation of duties
	1.3 Customizing the system
	1.3.1 z/OS system libraries
	1.3.2 SYS1.PARMLIB
	1.3.3 Link pack area (LPA)
	1.3.4 Pageable link pack area (PLPA)
	1.3.5 Fixed link pack area (FLPA)
	1.3.6 Modified link pack area (MLPA)
	1.3.7 SYS1.PROCLIB
	1.3.8 The master scheduler subsystem
	1.3.9 A job procedure library
	1.3.10 Search order for programs
	1.3.11 What system symbols are

	1.4 Managing system performance
	1.5 Configuring I/O devices
	1.6 Following a process of change control
	1.6.1 Risk assessment
	1.6.2 Change control record system
	1.6.3 Production control

	1.7 Configuring consoles
	1.8 Using SMP/E to manage changes
	1.9 Initializing the system
	1.9.1 Initialization process
	1.9.2 IPL types
	1.9.3 Shutting down the system

	1.10 Summary

	Chapter 2. Using SMP/E
	2.1 What is SMP/E?
	2.2 The SMP/E view of the system
	2.3 Changing system elements
	2.4 Introducing an element into the system
	2.5 Preventing problems with an element
	2.6 Fixing problems with an element
	2.7 Customizing an element - USERMOD SYSMOD
	2.7.1 Prerequisites and corequisites

	2.8 Tracking and controlling elements
	2.9 Working with SMP/E
	2.9.1 SMP/E basic commands

	2.10 When is SMP/E used?
	2.11 Why is SMP/E used?
	2.12 Terminology
	2.12.1 Communicating with IBM Defect Support
	2.12.2 Consolidate Software Inventory (CSI) and zones
	2.12.3 Maintenance

	2.13 Local SMP/E Environments
	2.13.1 Production, Test and Emergency Fix
	2.13.2 Base z/OS and Product CSIs

	2.14 How to use SMP/E
	2.14.1 SYSMOD
	2.14.2 JCL
	2.14.3 RECEIVE Command
	2.14.4 APPLY Command
	2.14.5 ACCEPT Command
	2.14.6 LIST Command

	2.15 ISPF
	2.16 Order and download IBM fixes
	2.17 Summary

	Chapter 3. Hardware systems and LPARs
	3.1 Overview of mainframe hardware systems
	3.2 Early system design
	3.3 Current design
	3.3.1 I/O connectivity
	3.3.2 System control and partitioning
	3.3.3 Characteristics of LPARs
	3.3.4 Consolidation of mainframes

	3.4 Processing units
	3.5 Multiprocessors
	3.6 Disk devices
	3.7 Clustering
	3.7.1 Basic shared DASD
	3.7.2 CTC rings
	3.7.3 Parallel sysplex

	3.8 Typical mainframe systems
	3.8.1 Very small systems
	3.8.2 Medium single systems
	3.8.3 Larger systems

	3.9 Summary

	Chapter 4. Parallel Sysplex and continuous availability
	4.1 Future of the new mainframe
	4.2 What a Parallel Sysplex is
	4.2.1 Shared data clustering
	4.2.2 Non-disruptive maintenance

	4.3 Continuous availability of mainframes
	4.3.1 No single points of failure
	4.3.2 Capacity and scaling
	4.3.3 Dynamic workload balancing
	4.3.4 Ease of use
	4.3.5 Single system image
	4.3.6 Compatible change and non-disruptive growth
	4.3.7 Application compatibility
	4.3.8 Disaster recovery

	4.4 Summary

